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Preface 

 

This thesis describes the design and implementation of a speech enhancement system that 

uses microphone array beamforming and speech enhancement algorithms applied to a 

speech signal in a multiple source environment.  The goal of the system is to improve the 

quality of the primary speech signal. 

 

Beamformers work by means of steering an array of microphones towards a desired look 

direction through utilizing signal information rather than physically moving the array.  

They accomplish this through minimizing the energy of interference sources and noise in 

non-look directions while increasing the energy of the signal in the look direction.  In this 

research, two beamforming methods are examined:  the delay and sum (DS) beamformer 

and the minimum variance distortionless response (MVDR) beamformer.  The input 

signals are first split into frequency bands so that narrowband beamforming techniques 

can be used.   

 

Multiple source Wiener filtering and multiple source spectral subtraction enhancement 

algorithms are incorporated into the two methods of beamforming.  The algorithms 

utilize signal estimates of each source obtained from the initial beamforming algorithms 

as inputs.  These multiple source enhancement algorithms result in iterative techniques to 

improve those estimates while improving the signal to noise ratio of the primary source. 
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The experimental setup presented here consists of both two and three speech sources 

using a linear microphone input system.  The algorithms are performed on both simulated 

experimental setups and on data obtained from a data acquisition system in an 

acoustically treated sound room. 

 

To measure the improvement in quality of the enhanced signal, overall SNR and 

segmental SNR improvement is determined for the original, beamformed, and enhanced 

signal.  In addition to these quality improvement metrics, listener opinion testing is 

performed. 
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Chapter 1 Introduction  

 

The ability to separate or enhance a primary speech signal in an environment with many 

speakers, the so called “cocktail party” effect, is an important issue, especially in recent 

years with the number of people with hearing damage dramatically on the rise and with 

the expansion of global businesses requiring the use of more sophisticated video and 

teleconferencing equipment.  Healthy human hearing is capable of identifying a single 

conversation among the noise of other conversations due to the binaural characteristic of 

human hearing in which the brain’s cognitive processing abilities utilize time differentials 

between signal inputs from each ear.  However, people who have hearing damage often 

compromise their binaural abilities (Plomp, 1986). 

 

Most common hearing aids work through amplifying all sounds and do not attempt to 

isolate the primary signal of interest, and recently, a hearing aid designed with a 

microphone array has shown tremendous results in increasing the ability of hearing 

impaired persons to understand speech in noisy environments using a fixed beamformer 

(Widrow, 2001).  Similarly, teleconferencing and hands free telephony equipment have 

traditionally amplified all sounds in a room.  Thus, in a room with multiple speakers, 

these systems output a fusion of sounds where the primary speech source signal is 

difficult to recognize and understand, and binaural information is lost.   

 

Beamforming algorithms have shown great promise in noise reduction, through utilizing 

the spatial information of the noise and primary source signals.  As the number of 
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microphones in an array increases, increasing the aperture size, the ability of 

beamforming algorithms to extract the primary source using spatial information improves 

(Brandstein, 2001; Dundgeon, 1993).   

 

The research presented here focuses on microphone arrays with a small number of 

microphones, up to eight, and a small aperture size, up to 0.4 meters, as would be 

required for hearing aid applications where users could comfortably wear the array 

(Widrow, 2001).  Smaller arrays are also more portable and affordable for applications 

with teleconferencing and hands free telephony.  These smaller arrays have less ability to 

extract the primary signal using beamforming algorithms and thus are amenable to 

improvement through the use of further speech enhancement algorithms (Brandstein, 

2001). 

 

While methods exist for a variety of beamforming techniques (Brandstein, 2001; 

Dundgeon, 1993) as well as for multi-source filtering in stationary noise (Saruwatari, 

2000), theory has yet to be developed for integrating spatial filtering with additional 

enhancement methods to deal with non-stationary interference, such as in multiple 

speaker interference environments.  This research addressed this need by creating 

methodologies to enhance speech signals with simultaneous, nonstationary noise sources.  

The primary contribution of this research work is to extend traditional speech 

enhancement algorithms such as spectral subtraction and Wiener filtering into the 

multiple-source domain.  By incorporating multiple parallel beamformers with algorithms 
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that iteratively improve the spectral magnitude estimates of each source, substantial 

improvement in overall signal separation can be obtained.   

 

For the non-stationary noise sources present in the multiple speaker scenario being 

investigated here, the method must be implemented on a frame-by-frame basis over the 

primary speech signal, allowing the noise source spectra to be continuously re-estimated.  

Specifically, the problem of enhancing a primary speech signal with one and two 

interfering speech sources and known source locations is addressed here.  In addition to 

nulling the directions of the interfering sources to extract a primary signal using one 

beamformer, as in (Widrow, 2001; Brandstein, 2001; Omologo, 1997), this research 

develops a new method of utilizing multiple beamformers, with coupled post-processing 

enhancement algorithms, to extract each speech source signal.  The fixed beamformers 

used initially have narrowband, far-field assumptions.  The spacing of the microphones as 

related to the distance to the sources is chosen appropriately for the far-field assumption 

as given in (Ryan, 1997) and discussed in Section 2.1.4.  Despite the fact that speech 

signals are broadband signals, narrowband assumptions can be approximated with the use 

of filter banks applied to each microphone input (McCowan, 2001). 

 

1.1 Thesis Statement 

This research addresses the problem of primary source enhancement in a multiple source 

environment.  It is important to note that enhancement techniques addressing speech 

signals contaminated with nonstationary speech as noise are not yet fully developed.  To 

improve the quality and recognition of the speech signal of interest, a microphone array 
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along with beamforming and speech enhancement algorithms can be used to separate the 

primary speech signal from the interfering speech signals.  The novel approach of using 

multiple beamformers to estimate each source signal and using those estimates in 

traditional speech enhancement algorithms adapted to a multiple source problem is 

implemented in this research.  Thus, it is the goal of this research to enhance the quality 

of the primary speech signal of interest through the development and implementation of 

multiple source beamforming and enhancement algorithms. 

 

1.2 Thesis Overview 

In Chapter 2, microphone array background information along with issues in the array 

geometry setup are discussed.  The algorithms used with microphone arrays to create and 

implement beamformers are explained in detail, particularly the delay and sum 

beamformer and the minimum variance delayed response beamformer.  In addition, 

traditional speech enhancement techniques are described.  Finally, the quality measures 

used to determine the amount of improvement performed by the algorithms developed in 

this research are examined. 

 

Chapter 3 presents the newly developed iterative multiple source enhancement algorithms 

that are at the heart of this research.  The issues with multiple speech sources as noise are 

discussed in association with the methods of implementing traditional enhancement 

methods into a multiple source environment.  To test the developed algorithms, the 

creation of simulated multiple speaker environments is detailed in Chapter 4 along with 

information on the geometries of the sound room, microphones, and speakers. 
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Chapter 5 presents the experimental hardware setup with the data acquisition system and 

details of the sound booth environment.  The hardware and software used are described.  

Chapter 6 outlines the experimental results of both the simulated experiments and the 

sound booth experiments.  The results are divided into two source and three source 

experimental setups.  Chapter 7 discusses the results of the research, and Chapter 8 gives 

recommendations to future direction related to this research. 
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Chapter 2 Background 

 

2.1 Microphone Array Fundamentals 

Although research has shown that single channel, as compared to multiple channel, signal 

separation algorithms have limitations in their ability to improve signal quality, 

implementation of multiple channel algorithms was difficult to perform in the early 

multiple input systems research.  This was due to the expense of purchasing many 

microphones and multiple input data acquisition hardware, in addition to the tremendous 

computing power required by the multiple dimension complexities.  However, with the 

advent of faster and greater computing power along with more affordable multiple input 

systems, microphone array signal processing is becoming a more feasible option.  This is 

beneficial to the speech processing field for the reason that multiple input systems are 

able to utilize beamforming algorithms.  These algorithms use spatial and temporal 

differences in the input signals to better improve the signal quality as compared to the 

improvements shown using single channel systems.  

 

2.1.1 Geometry 

Before developing and implementing beamforming algorithms with microphone arrays, 

the geometry of the microphone array must be addressed.  The number, the spacing, and 

the arrangement of the microphones all need to be determined.  An array shape can be 

designed as linear, square, circle, logarithmic, or many other microphone arrangements.  

Optimal microphone placement depends upon the specific enhancement and quality 
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assessment algorithms that will be used with the array in addition to the type of speech 

signal being analyzed (Rabinkin, 1997; Wang, 1996).   

 

In microphone array research, the most common and practical geometries examined are 

linear and square arrays.  These arrangements allow signal processing algorithms to be 

more easily implemented.  Square arrays have the advantage over linear arrays because 

they can operate in a three dimensional space.  Although linear arrays allow for only a 

two dimensional domain problem, operating in two dimensions requires less computation 

time and power as compared to three dimensions.  In a multiple speaker environment, it 

is commonly the case that the speaker locations are located in a roughly two dimensional 

plane since speakers are speaking at similar elevations.   

 

This research utilizes a linear array of microphones, and thus the signal sources are 

located at the same elevations.  For a linear, equally spaced array, the time it takes a 

speech signal to arrive at a given microphone is given by: 

 
v

mt φsind)1( −
=∆  [1] 

where m is the microphone number (one through M) so that microphone one has a ∆t of 

zero, φ is the angle of arrival of the speech signal, d is the distance between microphones, 

and v is the speed of sound.  Figure 1 shows the graphical presentation of this equation. 
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1 2 3 M
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Source 

φ 

∆t 
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Figure 1:  Propagating far-field sound wave with the microphone array 

 

In addition to the shape of the array, the number of microphones needs to be determined, 

which also determines the aperture, or end to end length, of the array.  With linear arrays, 

the overall length of the microphone array defines the aperture.  Increasing the number of 

microphones, which in turn increases the aperture size, will increase the resolution of the 

respective spatial filter that can be created by that array.  With an increasing resolution, 

the spatial filter becomes more able to extract a signal from a more precise location.  

Hence, an infinitely long aperture is able to discriminate or separate signals that are 

infinitesimally close together (Dundgeon, 1993).  Infinitesimally large aperture arrays, 

however, can obviously not be implemented and it is necessary to decide upon a practical 

aperture size that will allow for the signal of interest to be effectively filtered from other 

interfering direction signals. 
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Microphone spacing is the final, crucial design parameter in microphone array geometry 

and much research has been performed in this arena.  Spatial filtering, which is the basis 

of beamforming, is utilized when the function of a microphone array is to extract a signal 

from a specific location.  Similar to the Nyquist theory for frequency filtering of signals, 

spatial filtering must conform to a spatial aliasing criterion related to the highest 

frequency found in the signal of interest.  The spatial equivalent can be given by: 

 
f

v
2

d =  [2] 

where d is the maximum spacing between the microphones, f is the highest frequency of 

the signal being detected by the microphones, and v is the velocity of sound waves.  The 

velocity of sound waves used for this research is 345 meters per second, which is 

approximately the velocity at standard atmospheric conditions at sea level and 22 degrees 

Celsius.  To prevent spatial aliasing, the above equation requires the microphone spacing 

to be small enough to prevent aliasing of the highest frequency being analyzed.   

 

For example, speech signals’ highest frequency is approximately 20,000 Hz, resulting in 

a microphone spacing of 8.625 millimeters.  Microphones physical characteristics will 

not allow for spacing this small.  In this research, the highest frequency content to be 

analyzed is 7000 Hz, which results in a microphone spacing design of about 2.5 

centimeters to have no spatial aliasing. 

 

2.1.2 Source Localization 

A major field of array speech signal processing is dedicated to source localization and 

detection.  In localization research, the microphone array can be used to determine the 
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location of a speaker, angular direction of a signal, and number of speakers and 

additionally used to track speaker positions (Svaizer, 1997; Brandstein, 1995; Rabinkin, 

1996).  The ability to locate a speaker in an environment is crucial to many 

teleconferencing and videoconferencing applications and can be used as a front end 

process for the beamforming source separation algorithms discussed in section 2.2. 

 

When utilizing microphone arrays for source location applications, the spatial aliasing 

criteria need not be followed in most setups.  This is because source location algorithms 

are usually only interested in time differentials between microphone pairs to determine 

the location of a source.  Therefore, they do not use spatial filtering to extract the source 

signal.  As long as the velocity of the signal and the spacing of the microphones are 

known, the time differentials between microphone pairs yield the information necessary 

to locate the direction of the signal and the source in space.  With greater time 

differentials, less resolution and less computational load is required to determine the 

location of the signal source (Svaizer, 1997).  To achieve greater time differentials 

between microphone pairs, the design of source location arrays requires a larger 

microphone spacing design.  

 

As described above, the basis of the microphone spacing design parameter differs in 

source location arrays versus source extraction arrays.  Source location microphone 

arrays benefit from larger spacing through increased resolution whereas source extraction 

arrays benefit from smaller spacing to prevent aliasing at the highest frequency of 

interest.  Thus, the ability to design a combined source location and source extraction 
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array is problematic.  The arrays in this research have a priori knowledge of the source 

locations and are designed to perform source extraction algorithms, focusing instead on 

beamforming enhancement.  In the future, source localization and tracking technology 

will be able to be coupled to the enhancement algorithms being investigated here. 

 

 

2.1.3 Speech Signal Broadband Issues 

The first array signal processing algorithms were developed for sonar equipment using 

narrowband signals.  Today, in a majority of array signal applications, such as sonar and 

telecommunication applications, the signal of interest is a narrowband frequency signal.  

Consequently, much narrowband research has been conducted and narrowband sensor 

array algorithms have been well developed.  Much of the array signal processing theory 

is thus based upon a narrowband frequency assumption.  One of the challenges of 

microphone array signal processing applications is the fact that speech signals are 

broadband signals spanning the frequency band of human acoustic perception, 

approximately 20 to 20,000 Hz. 

 

To be able to use narrowband frequency theories, the broadband speech signal can be 

broken into frequency bands.  The smaller each frequency band range is defined, the 

more accurately a narrowband signal is approximated.  However, more analysis is 

required when using small frequency bands.  With more bands used, there is a 

proportional increase in the size of the overall speech array model and consequently an 

increase in computational complexity.   
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The model used in speech array signal processing must balance the number of frequency 

bins and the span of each bin when using narrowband model assumptions.  As the 

bandwidth of a frequency band increases, aliasing occurs and introduces artifacts in the 

signal when resynthesized.  Therefore, a compromise between the bandwidth of the 

frequency bins and the ability of the narrowband model to remain valid must be created.  

(Kellerman, 1988; Weiss, 1998). 

 

To minimize the computational complexity associated with a large amount of frequency 

bands over the 20 to 20,000 Hz range, researchers can take advantage of the fact that the 

perception of human hearing is primarily focused on a frequency span of approximately 

200 to 8000 Hz, meaning that this frequency range has more importance when listening 

to and understanding a speech signal.  For example, telephone signals have a frequency 

range of 300 to 3000 Hz.  Although this is a much smaller range of frequencies compared 

to the 20 to 20,000 range, it is still generally acceptable and intelligible.  This research 

will focus upon a frequency range of 300 to 7000 Hz with ten frequency bins. 

 

Although breaking the broadband speech signal into narrowband frequency bins creates 

more computational load, this setup also easily allows for the use of sub-band 

enhancement and sub-band recognition algorithms, which have recently shown great 

interest in speech processing research (McCowan, 2001; Kajita, 1996; Wu, 1998).  The 

basic methodology of this research is shown in Figure 2.  The enhancement algorithms 

are processed on each frequency sub-band signal, thus allowing for more or less emphasis 
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to be placed on particular frequency bands in the signal.  The ability to process frequency 

bands separately better emulates human hearing where lower frequencies are given more 

perceptual emphasis and also allows systems to focus on frequencies with lower noise, 

leading to more robust systems. 
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Figure 2:  Sub-band speech recognition and enhancement 

 

In (McCowan, 2001), microphone array technology is integrated with sub-band speech 

recognition models through the creation of a speech recognition system for each 

frequency sub-band.  The resulting beamformed sub-band recognition systems 

outperformed both single channel sub-band systems and full band beamformed 

recognition systems. 

 

As previously stated, the algorithms developed here filter the microphone signals into 

frequency bins to be able to use the established narrowband array signal processing 

methods.  This allows the enhancement algorithms developed here to be incorporated in 

sub-band methods. 
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2.1.4 Nearfield/Far-field Approximations 

Most traditional array research has been performed using far-field approximations of 

signal waves where the signal of interest’s wave is planar upon reaching the array as 

shown in Figure 3.  

 . . .  . . . 

array of M microphones

Sound 
source

 

Figure 3:  Far-field planar sound wave propagation 

 

Although the planar wave assumption is used extensively in array signal processing, the 

true wavefront of a speech signal is spherical, as shown in Figure 4.  The curvature, 

however, becomes less pronounced as the wave travels, which leads to a more planar 

wavefront.  
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 . . .  . . . 

array of M microphones 

Sound 
source

 

Figure 4:  Nearfield spherical sound wave propagation 

 

When far-field assumptions are valid, the complexity of the setup is reduced to one 

parameter, the angle of wave propagation, whereas when using nearfield wave 

propagation theory another parameter, the radial distance from the source to the array, is 

introduced. 

 

The determination of whether the planar assumption is valid is found in the relationship 

between the spacing of the microphones and the distance of the sound source to the 

microphone array.  The planar assumption becomes justified as the sound source distance 

to the array increases and as the spacing of the microphones and overall aperture length 

decreases.  To quantify this, the valid nearfield region is given by (Steinberg, 1976): 

 
λ2

2Lrnf =  [3] 
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where the nearfield radius is rnf, the microphone spacing is λ/2, and the overall length of 

the array is L.  Far-field planar assumptions are generally accepted to be valid for sound 

sources outside of this region.   

 

There has been some interest in microphone array signal processing in areas where the 

array geometry and source location produce a nearfield model.  In (Ryan, 1997), nearfield 

and far-field wavefront differences from a sound source and its respective reverberations 

were used to optimize an arbitrary microphone array design to decrease the noise from 

the reverberations.  The reverberation noise created from the sound source was modeled 

as far-field, planar waves.  The optimized nearfield algorithms outperformed traditional 

delay and sum beamformers in the experimental setups.  Similarly, in (Tager, 1998) the 

sound source of interest was considered to be in the nearfield whereas interfering noise 

sources were placed in the far-field.  Tager exploited the differences of these wavefronts 

to produce a nearfield superdirectivity algorithm that outperformed the traditional delay 

and sum beamforming algorithm, especially for low frequencies. 

 

The microphone arrays used in this research with respect to the speech source locations 

allow for the use of far-field models in that the microphone array overall lengths are 

small as compared to the distances to the sound sources.   
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2.2 Beamformer Fundamentals 

Beamforming algorithms, used in conjunction with an array of sensors, take advantage of 

the time differentials between incoming signals among the sensors in the array.  This is 

due to the fact that a signal emitted from a source, located at specific position in space, 

will arrive at a unique time for each sensor in an array according to the relation between 

the sensors and the source.  Using this spatial information, source location and primary 

signal extraction beamforming are possible.  These tasks represent the two main fields of 

microphone array signal processing research being performed today. 

 

Using beamformers to determine source locations has applications to teleconferencing 

and videoconferencing, in addition to radar and sonar.  In (Rabinkin, 1996), a 

microphone array for a lecture room was created where a source location beamformer 

was used to determine the position of the current speaker.  This microphone array was 

implemented using two sets of four microphones in a square geometry with application to 

source location in an auditorium setting.  This research utilized the time delay of arrivals 

(TDOA) between microphone pairs as inputs to a correlation based beamforming 

algorithm to determine the source location.  With the position of the speaker determined, 

a video camera was integrated into the array system to automatically point the camera at 

that speaker.  This system, however, could handle only a one source environment. 

 

Most source location estimators have been extended into a multiple source environment 

through determining the direction of signal propagation using a modification of the 

MUSIC algorithm (Rao, 1985), a spectral estimation method based on sub-space 
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decomposition.  Multiple source location algorithms require a higher resolution estimator 

with increased computational load typically through the use of cross correlation metrics 

to estimate the source locations (Rao, 1985; Wang, 1985; Friedlander, 1993).  

 

For signal extraction, beamformers use time lags between sensors to reduce noise effects 

and improve the quality of the primary signal.  Research has shown that beamforming 

algorithms outperform traditional, single channel enhancement methods (Bitzer, 2001; 

Saruwatari, 2000; Brandstein, 2001).  To reduce noise in an environment, beamformers 

act as spatial filters through “steering” the array of sensors towards a “look” direction 

where the primary signal of interest is located, thus emphasizing the primary signal 

features while negating the noise signal features. 

 

In (Widrow, 2001), beamforming algorithms were integrated into a hearing aid design, 

which increased the user’s ability to understand speech up to 70 percent compared to 

traditional hearing aid designs.  Widrow’s design consists of a necklace microphone array 

as shown in Figure 5.  Widrow assumed the look direction to be directly in front of the 

wearer or at zero degrees to the array. 
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Figure 5:  Hearing aid microphone necklace array (Widrow, 2001) 

 

2.2.1 Delay and Sum Beamformer 

The most fundamental of the beamforming algorithms is the delay and sum (DS) 

beamformer.  Given a signal of interest in a certain location in space, the signal will 

arrive at the sensors, or microphones, at times determined by each microphone’s location.  

For a linear, equally spaced array and a far-field model, those time differentials are as 

given previously in equation [1].  As mentioned, Figure 1 shows the graphical 

representation of the propagating signal. 

 

Once the time difference of each microphone relative to the others is determined, each 

microphone signal is shifted in time to align the signal of interest, without aligning the 

noise.  This is accomplished only when the noise is not propagating in the same direction 

as the signal if interest.  As shown in Figure 6, the signal of interest is increased in 

magnitude by the number of microphones in the array, while the noise is linearly 

combined.  The flow graph of the DS beamformer is shown in Figure 7.  Once the signals 
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are time shifted and summed, dividing by the number of microphones normalizes the 

signal of interest.   

 

 

Figure 6:  A graphic of a DS beamformer 

   



    21 

 

 

. 

. 

. 
Σ 

Mic 1 

Mic 2 

Mic M e-j(M-1)Θ

e-jΘ

1

 

Figure 7:  DS beamformer flow graph 

 

The equation for the DS beamformer response, z, is given by: 

∑
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where M is the number of microphones in the array and where each narrowband 

microphone signal ym or y has a center frequency f and arrival angle φ.  The “H” denotes 

the hermitian transpose of a vector or matrix and a “T” denotes the transpose of a vector 

or matrix.   The filter weights wm or w are a function of the delay vector d that is 

normalized by dividing by the number of microphones.  With a far-field model and a 

linear, equally spaced array, the filter weights’ delay vector d is defined by: 
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Although the DS beamformer is extremely simple in design, this simplicity has a 

significant advantage over other more complicated beamformers through its fast 

computational abilities.  This characteristic allows the use of the DS for real time 

implementation as is required in many applications like hearing aid design and 

teleconferencing. 

 

2.2.2 MVDR Beamformer 

The minimum variance distortionless response (MVDR) beamformer improves upon the 

DS beamformer through utilizing the correlations between microphone pair signals in 

addition to the time differentials.  The MVDR is normally implemented as an adaptive 

algorithm because it computes the correlation matrix of the array signals for each 

segmented frame.  Typically, speech signals are broken into frames to approximate 

stationarity of the signal characteristics. 

 

The MVDR works by minimizing signals propagating from directions other than the look 

direction of the beamformer while constraining the signal response in the look direction 

to unity: 

  [7] 1=dwH

A solution to this problem is found in the MVDR beamformer and can be derived using 

Lagrange multipliers (Frost, 1972).  The resulting equation for the MVDR beamformer 

filter weights is given by: 

 
dRd

dRw 1H

1

−

−

=  [8] 
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where d is the delay vector as previously defined on page 21 and R is the autocorrelation 

matrix of the array signals at a sample point.  Note that the DS beamformer can be 

viewed as a sub-case of the MVDR beamformer, with R reduced to the identity matrix. 

 

 

2.3 Implementation of Beamformers 

 

2.3.1 Delay and Sum Beamformer 

From equation [6], the DS beamformer output has, in general, both real and imaginary 

components.  This is due to the narrowband assumption, where ejΘ is intended as a delay 

element at a specific frequency, which does not generalize to real data.  To deal with this, 

the relative time delays are calculated from equation [1] and the signal from each 

microphone is then shifted by the respective amount of points, rather than implementing 

the theoretical filter equation.  For this research, the sampling frequency is always 16,000 

Hz so that each point in the signal represents 62.5 microseconds.  Once each of the 

microphone signals is appropriately shifted, they are summed together to create the 

beamformer output signal. 

 

2.3.2 MVDR Beamformer 

The theoretical MVDR filter weights in equation [8] also give both real and imaginary 

components.  In a method similar to that above, the microphone signals are time shifted 

by the appropriate delay value.  The correlation matrix, R, is calculated and applied to the 
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microphone signals to create the beamformer output as detailed in the following steps 

outlined in Table 1: 

 

Theoretical Approach Practical Implementation 

1.  Calculate the M by M inverse correlation 

matrix of the signal array R-1

1.  Calculate the time/sample delay given 

the signal’s angle of approach using  

v
mt φsind)1( −

=∆  

2.  Calculate the theoretical M by 1 delay 

vector given by equation [6]: 

 

],...,,,1[ ))1(()2()( Θ−−Θ−Θ−= Mjjj eeeTd

2.  Time align each microphone signal so 

that the delay weights given by equation 

[6] reduce to a vector of unity values.  

Calculate the M by M inverse correlation 

matrix of the time aligned microphone 

signal array R-1

3.  Multiply the M by M inverse correlation 

matrix by the M by 1 delay vector 

3.  Multiply the M by M inverse 

correlation matrix by the M by 1 unity 

vector of delays. 

4.  The resulting M by 1 vector is then 

calculated and divided by the scalar value 

dHR-1d to create the filter weight vector, w 

4.  Divide the resulting M by 1 vector by 

the scalar value resulting from the 1 by M 

unity vector multiplied by the inverse 

correlation matrix and then again 

multiplied by the M by 1 unity vector. 

5.  Apply the filter weight vector to the 

signal array with: 

][),(][, nfnf ywz H φφ =  

A sample point in the beamformer output is 

then produced 

5.  Apply the resulting M by 1filter weight 

vector to the signal array as in: 

][),(][, nfnf ywz H φφ =  

A sample point in the beamformer output 

is then produced 

Table 1:  Theoretical versus practical MVDR beamformer process 
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2.4 Speech Enhancement Fundamentals 

Speech enhancement is a large research area in speech signal processing.  The goal of 

many enhancement algorithms is to suppress the noise in a noisy speech signal.  In 

general, noise can be additive, multiplicative, or convolutional, narrowband or 

broadband, and stationary or nonstationary.  The majority of research in speech 

enhancement addresses additive, broadband, stationary noise. 

 

Speech enhancement algorithms have many applications in speech signal processing.  

Signal enhancement can be invaluable to hearing impaired persons because the ability to 

generate clean signals is critical to their comprehension of speech.  Enhancement 

algorithms are also used in conjunction with speech recognizers and speech coders as 

front end processing.  It has been shown that enhancing the noisy speech signal before 

running the signal through a recognizer can increase the recognition rate and thus create a 

more robust recognizer (Kajita, 1996; Bitzer, 2001; McCowan, 2001).  Similarly, front 

end enhancing to speech coding has been shown to decrease the number of bits necessary 

to code the signal (Carnero, 1999). 

 

2.4.1 Spectral Subtraction 

One of the most simple and widely used enhancement methods is the power spectral 

subtraction algorithm.  This algorithm’s basis is in estimating the noise and subtracting it 

in the power spectral domain (Boll, 1979).  The basic equations are given by: 

 nsy +=  [9] 
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where s is the clean signal, n is the uncorrelated noise signal, and y is the noise corrupted 

input signal, and 

  [10] nys Γ−Γ=Γˆ

where  is the power density spectrum (PDS) of the noise corrupted signal found by 

taking the Discrete Fourier Transform (DFT) of the noisy signal and  is the PDS of the 

noise signal estimate.  In the above equation, the PDS of the noise estimate is subtracted 

from the PDS of the noise corrupted signal, yielding a PDS estimate for the clean signal.  

An inverse DFT is then applied to obtain the clean signal estimate.  Some initial 

knowledge of the noise signal must be known in order to obtain a noise signal estimate.  

Because an a priori noise signal estimate is often difficult to find, iterative improvements 

are often performed on the algorithm by replacing the noise corrupted PDS by the 

resulting PDS clean signal estimate. 

yΓ

nΓ

 

This algorithm has many adaptations and improvements (Hu 2002; Deller 2000).  One 

particular example is the power spectral subtraction method given by: 

 [ ] sje ϕωωω
2/122 )()()(ˆ NSS −=  [11] 

where S  is the resulting clean signal PDS estimate, S is the DFT of the noise corrupted 

input signal, N is the DFT of the noise signal estimate, and ϕ

ˆ

s is the phase spectrum of 

the input signal.  Capturing the phase information from the noise corrupted signal is a 

valid approximation because human perception places little importance on the phase 

information in speech signals (Wang, 1982).  A similar algorithm is the generalized 

power spectral subtraction method given by (Berouti, 1979): 
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 [ ] sjaaa ek ϕωωω
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)()()(ˆ NSS −=  [12] 

A noise correlation constant k and a power constant a are the differences between 

equation [11] and equation [12].  Integrating a noise correlation constant allows the 

generalized spectral subtraction method to further adjust how much noise power is 

subtracted. 

 

From the above equations, imaginary values can result if the estimate of the noise PDS is 

greater than the PDS of the noise corrupted signal.  Because speech signals are real 

valued signals, these imaginary values can be dealt with through spectral flooring.  

Spectral flooring sets negative PDS estimates to zero. 

 

2.4.2 Wiener Filtering 

Another widely utilized algorithm in speech enhancement research is the Wiener filter.  If 

both the signal and the noise estimates are exactly true, this algorithm will yield the 

optimal estimate of the clean signal.  Through minimizing the mean squared error 

between the estimated and clean speech signals, the Wiener filter is developed and given 

by: 
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  [14] )()()(ˆ ωωω SHS =

where H is the Wiener filter, and S and N are the noise corrupted speech and noise 

spectra, respectively.  Because the Wiener filter has a zero phase spectrum, the phase 

   



    28 

from the noisy signal is the output phase for the estimation of the PDS of the clean signal.  

This was similar to the spectral subtraction algorithms. 

 

It should be noted that the Wiener filter assumes that the noise and the signal of interest 

are ergodic and stationary random processes and thus not correlated to each other.  To 

accommodate the nonstationarity of speech signals, the signals can be broken into frames 

to assume stationarity, as is commonly done in speech signal processing research. 

 

Another generalization to the Wiener filter is found through incorporating a noise 

correlation constant k and a power constant a to the filter: 
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Again, similar to spectral subtraction, a priori knowledge of the noise signal is required, 

but is often difficult to obtain.  Incorporating iterative techniques and methods of 

estimating the noise are therefore important to the Wiener filter algorithm (Hansen, 1987; 

Lim, 1978).  The iterative techniques re-estimate the Wiener filter with each iteration. 

 

2.4.3 Single Channel Systems 

The traditional speech enhancement techniques of Wiener filtering and spectral 

subtraction have been based upon a single channel system given a priori knowledge of 

the noise characteristics.  In most real world situations, however, a priori knowledge is 

not available.  To obtain an estimation of the noise, detection methods were created to 
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determine when speech silence regions occur.  During these speech silent regions, it is 

assumed that only noise is present in the input signal, therefore allowing the extraction of 

a noise estimate.  With this information, the noise characteristics can be determined and 

used in the enhancement algorithms listed above.  In order to determine silence regions, 

most methods utilize an energy based calculation where a threshold is set.  If the energy 

reaches a certain limit, a decision is made to flag a silence region and obtain a noise 

estimate at that time (Ris, 2001).  It follows that these enhancement algorithms will 

perform less efficiently given a noise corrupted signal with a large signal to noise ratio.  

Given a small noise signal, obtaining a high-quality estimation of the noise signal is more 

difficult. 

 

2.5 Speech Enhancement Measurement Fundamentals 

Because the focus of this research is on speech signal enhancement, it is important to 

introduce the methods used to determine the amount of enhancement the algorithms 

developed here perform.  Previous research of enhancement metrics has been unable to 

find a quantifier directly correlated to that of human perception.  This is challenging 

because human perception varies from person to person and science has yet to unlock all 

of the secrets of human cognitive function. 

 

2.5.1 Objective and Subjective Metrics 

Objective metrics can be calculated given an equation whereas subjective metrics require 

human subjects and individual opinions to score them.  Objective quantifications of 

enhancement are created through arithmetic algorithms such as the signal to noise ratio 
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(SNR) or Itakura distance measure (Itakura, 1975).  Because subjective testing is 

extremely laborious to conduct compared to that of objective metrics, much research has 

been performed to try to create an objective measure that correlates well to human 

subjective testing, however this has so far been unsuccessful (Deller, 2000).  Therefore, 

using subjective tests with people remains the best metric for speech enhancement. 

 

Some of the more common performance measures are the SNR, the segmental SNR, the 

Itakura metric, and the accuracy rate of speech recognition engine.  Although none of 

these metrics is a direct measure of perceived speech signal quality, it has been 

established that the segmental SNR is more correlated to perception than SNR 

(Quackenbush, 1988).  This research utilizes the SNR and the segmental SNR as 

objective enhancement quantifications.  The SNR is given by: 
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where the clean signal is s and the enhanced signal is .  The segmental SNR simply 

creates stationarity to the speech signal through dividing the signal into i frames each 

with N points and also helps give equal weight to softer-spoken speech segments.  The 

final segmental SNR value is the average of the i segmental SNR frame values. 

ŝ
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Using a speech recognition engine allows for comparison of the noisy signal and 

enhanced signal through comparing accuracy values.  The noisy signal is first run through 

the recognizer and then the enhanced signal is put through it.  Recognition accuracy is 

used as a measure of signal intelligibility. 

 

2.5.2 Quality and Intelligibility 

There are two separate issues to address with respect to enhancement:  quality and 

intelligibility.  Intelligibility is the capability of a person to understand what is being 

spoken whereas improving the speech signal quality is based more upon the naturalness 

and clarity of the signal.  Although a listener may be able to understand words spoken in 

a signal, the signal may not sound “natural”, and may be perceived as poor quality.  This 

is true in robotic-like synthesized speech.  As mentioned previously, telephone signals 

have a limited bandwidth and thus have a degraded quality compared to the same signal 

if no band limitations occurred.  This degraded quality, however, does little to 

compromise the intelligibility of the signal.   

 

Quantifying intelligibility is more definitive because listeners can be asked to write down 

what they hear or circle words that they heard on a questionnaire.  This type of testing 

can have explicit quantities because the words written or circled are either correct or not.  

A commonly used test for intelligibility is the diagnostic rhyme test (DRT) that requires 

listeners to circle the word spoken among a pair of rhyming words.  Although 
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intelligibility is simple and definitive to score among listeners, the objective algorithms 

discussed in the previous section cannot quantify intelligibility.   

 

The objective algorithms used to measure signal enhancement can only estimate relative 

change in quality of the signal.  Quality testing is subjective among listeners because the 

basis of quality is rooted in the opinions of each individual’s perception of quality.  One 

person may be a more critical judge of quality compared to another; thus, creating a bias 

in quality rating among individuals.  Typically, testing of quality is done with a rating 

system.  A mean opinion score (MOS) is a common quality test that asks a listener to rate 

the speech on a scale of one to five, with five being the best quality.  These tests can 

attempt to reduce individual biases through normalizing the means of each listener with 

test signals. 

 

Although intelligibility testing with listeners is more easily and precisely quantified 

compared to quality testing, the implementation of intelligibility tests like the DRT is 

more difficult.  Quality testing using a rating system on a signal, as in the MOS, is simple 

for a listener and allows for more types of speech to be utilized. 
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Chapter 3 Iterative Multiple Source Enhancement Method 

When enhancing speech signals in a multiple speaker environment, the traditional 

enhancement methods have shortcomings and must be adapted.  They are not able to 

cope with nonstationary noise with similar spectral characteristics, as is the situation with 

multiple speech signals.  In addition, they are not designed for the multiple channel 

systems available with microphone arrays.   

 

The traditional method of obtaining a noise estimate from a silent region of the primary 

speaker works well for noise that has stationary spectral characteristics; however, a 

speech signal corrupted with interfering speakers has nonstationary speech as noise.  

Interfering talkers may have characteristics changing at a rate faster than the primary 

speaker, and the silence region noise estimators will not perform well in the multiple 

speaker environment.  Additionally, if the interfering talkers have similar energy 

characteristics, as is often the case in multiple speaker environments, the silence detector 

will not be able separate the energies of the primary speaker and interfering speakers.  

This will render a detector unable to separate the primary speaker’s silent regions.  The 

silent region detectors cannot be used in multiple speaker environments because they are 

unable differentiate between the primary and interfering talker signals. 

 

To integrate the spectral subtraction and Wiener filtering enhancement methods to a 

multiple channel system, post beamformer filtering has been performed in previous 

research (Marro, 1998; Bitzer, 1999; McCowan, 2000).  The general block diagram is 
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shown in Figure 8.  The signals from each of the microphones, x1 through xN, are first 

time aligned into x′1 through x′N given a priori knowledge of the signal’s location.  Then, 

each signal is broken into i frequency bins where the data is processed through the 

beamformer’s weighting function, g, and the noise filter function, d.  Typically, g and d 

are identical functions.  A noise post filter estimation is created and applied to the signal 

generating the post filtered beamformed output Z.  To synthesize back to the time 

domain, an inverse transform is performed on each of the frequency bins.  The noise post 

filter adapts itself based upon the output SNR (Brandstein, 2001).  
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Figure 8:  Block diagram of post filtering enhancement algorithms integrated with a 

microphone array 

 

A generalized estimation of the noise post filter based upon the MVDR beamformer is 

derived in (Marro, 1998) to be:  
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where RD is the diagonal matrix of the autocorrelation matrix. 

 

Although equation [18] integrates noise filtering enhancement techniques with a multiple 

channel beamformer, it remains dependent upon a priori knowledge of the noise signal in 

order to first estimate the noise spectral characteristics.  In multiple speaker environments 

using microphone arrays, as discussed previously in this section, it is not possible to 

predict or estimate the noise from an interfering talker.  Further, the adaptive ability of 

the post filtering techniques relies on a prior knowledge of the primary signal in order to 

calculate an SNR. 

 

To contend with the multiple speaker environment using a microphone array, this 

research uses multiple, parallel beamformers with a prior knowledge of source locations 

to acquire noise and signal estimates.  In estimating the primary speaker, an initial 

beamforming algorithm is performed using either the DS or MVDR beamformer steered 

toward the primary speaker’s direction.  After the beamformer is used to extract the 

primary source signal, artifacts of the non-primary signals may still remain.  To further 

extract the primary signal, the use of multiple beamformers obtains each noise source’s 

estimate, and multiple source alterations of the traditional enhancement methods can then 

be utilized.  A block diagram is shown in Figure 9. 
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Figure 9:  Multiple source enhancement algorithm flow graph 

 
3.1 Multiple Source Spectral Subtraction Enhancement 

To develop the multiple speaker spectral subtraction enhancement algorithm, the N noise 

source beamformer outputs are used as the initial noise estimates, , while the noise 

corrupted signal, S, is set to be the primary source beamformer output as shown in: 

iN̂
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Like the traditional generalized algorithm, the phase is added back in using the noisy 

signal phase and the signals are windowed to approximate the speech signal as stationary.  
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In this research, the power constant a is set to be two.  This creates a power spectral 

subtraction so that there are only positive values in the noise spectral characteristics used 

in the algorithm.  If the noise power estimates multiplied by their respective k constant 

factors are larger than the noise corrupted signal power, a negative new power estimate is 

created.  Spectral flooring is used so that no negative values are established.  The 

constant factors k are related to the coupling between the sources as discussed below in 

Section 3.3 

 

The algorithm is iterated to maximize enhancement.  As shown in the block diagram in 

Figure 8, the enhanced signal estimates can be looped back into the algorithm as an 

updated noise signal estimate for the other source signals.  It is important to note that the 

original beamformed signal is always used as the noise corrupted signal S.  The amount 

of improvement in the noise estimate will approach a limit as the number of iterations 

increases.  This limit is dependent upon the unique multiple source environment, and in 

this research, the number of iterations is set to be five. 

 

The iterative approach to the algorithms led to some investigation into the convergence of 

the noise signal estimates.  As a result, a smoothing function is integrated into the 

implementation of the algorithms.  The new estimate of the noise signal is simply 

averaged with the previous noise estimate signal upon each iteration process.  This allows 

for faster convergence of the noise signal estimates and thus reduces the required 

iterations to five. 
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The rate of convergence for the noise estimates is highly dependent upon the initial noise 

estimates.  For the multiple source situations presented here, a more spectrally dominant 

source will yield a high-quality estimate of that signal while at the same time creating a 

poor estimate for the less powerful source.  A large difference between the estimates 

causes a longer convergence time, and incorporating the smoothing function helps 

minimize that convergence time. 

 

3.2 Multiple Source Wiener Filtering Enhancement 

Like the multiple source spectral subtraction algorithm, the multiple source Wiener filter 

utilizes the N noise source beamformer outputs as the initial noise estimates, .  Again, 

the noise corrupted signal, S, is set to be the primary source beamformer output, and the 

signals are divided into frames.  The resulting filter is: 

iN̂
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As shown, the noise signal estimates are the key factor to the amount of enhancement 

produced.  Therefore, the algorithm is improved through the creation of an iterative noise 

estimation as shown in Figure 8.   

 

3.3 Coupling function, k 

The noise of the original signal is composed of multiple interfering speakers and is 

initially passed through a beamformer to de-emphasize the interfering talkers’ noise 

signals; however, some level of the interfering talkers remain even after beamforming.  
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This is especially true for the small aperture array that is used in this research because the 

resolution of the beamformer to separate signals in space decreases with decreasing 

microphones.  The separation resolution of the beamformer is also dependent on 

frequency and the separation of the signal sources.  The lower the frequency, the less the 

beamformer is able to separate the signal at that frequency.  Similarly, the closer the 

sources, the less the beamformer is able to separate the source signals.   

 

It is therefore necessary to incorporate a function that is related to the beamformer 

response when filtering or subtracting the remaining interfering talker spectral 

information.  Like the beamformer response, this function is dependent upon frequency 

and the talkers’ physical separation.  In the multiple source spectral subtraction and 

Wiener filtering techniques, a coupling factor k is applied.  This coupling function 

determines the amount of the interfering signal’s spectral energy that is filtered or 

subtracted from the beamformed signal.   

 

The coupling function is calculated using an estimate of the amount of interfering talker 

noise that is passed through the beamformer using the beamformer lobe function.  This 

function determines the amount of noise coupled in the beamformed signal, as shown in 

Figure 10 and given by: 
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Figure 10:  DS beamformer lobe for an array with eight microphones and 2.5 cm spacings 

and a changing φ in radians. 

 

This equation is taken from the DS beamformer response and is a function of frequency 

and source direction.  Given the beamformer function and a specific angular separation, it 

is possible to evaluate the coupling function across frequencies that can directly 

determine the spectral characteristics of the interfering sources passed through the 

beamformer.  Incorporating this coupling function into the post filtering enhancement 

algorithms will ensure that the interfering talkers’ signal residual spectrum is subtracted 

or filtered with the appropriate level across the frequency range.   
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Although the beamformer function is a sinc function in theory, it is judicious in practice 

to define the coupling function through using the sinc function envelope in order to make 

it more robust to slight discrepancies in the source locations.  The coupling function 

based on this envelope is shown in Figure 11 and given by: 
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Figure 11:  Coupling-function, k, as envelope of the beamformer sinc function  
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Chapter 4  Experimental Setup 

4.1 Overall Setup 

The experiments can be broken into two main types:  simulated experiments and sound 

booth experiments.  The sound booth experimental hardware and data acquisition system 

is discussed in Chapter 5.  The algorithms are executed in the same manner for both the 

simulated and sound booth experiments. 

 

4.2 Multiple Speaker Input Signals 

To simulate the multiple speaker environment, equation [1] was used to determine the 

appropriate time shift for each source signal given the angle of direction for each source 

and the microphone signal being created. 

 

4.2.1 Simulated geometries 

First, a two source experiment was run with the first speaker placed at a constant location 

while the second speaker’s location was varied as shown in Table 2 and Figure 12.  For 

each geometry, the second speaker’s signal was varied in magnitude ten times, thus 

creating ten SNR’s per geometry.  The speech signals used were the same signals for this 

entire geometry and SNR variation.  This experimental set up was run five times or for 

five different speech signal combinations. 
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Source 1 Source 2 

–π/3 π/3 

–π/3 π/4 

–π/3 π/5 

–π/3 0 

Table 2: Simulated two source geometries 

 

Next, a three source experiment was run with the first speaker placed at a constant 

location while the second and third speakers’ locations were varied as shown in Table 3 

and Figure 12.  Again, ten variations in the SNR were created by magnitude changes of 

speakers two and three for each geometry, and the speech signals used were the same 

signals for this entire geometry and SNR variation.  The entire experiment of all of these 

geometries and SNR’s was run five times or for five different speech signal 

combinations. 

Source 1 Source 2 Source 3 

0 –π/3 π/3 

0 –π/4 π/4 

0 –π/5 π/5 

Table 3: Simulated three source geometries 
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Figure 12:  Experiment setups 

 

4.2.2 Sound booth geometry 

In the sound booth experiments, there is a primary source and one competing noise 

source.  Both sources remain stationary in adjacent corners of the room, located at -π/7 

and π/7 as shown in Figure 13.  The amplitudes of the noise source were amplified 

differently to create five different SNR’s. 
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Figure 13:  Sound booth multiple source experiment layout 

 

4.2.3 Data 

The data used to create the multiple speaker environments in this research is obtained 

from the DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus database 

(Garofolo, 1993).  The training waveform files can be used to build automatic speech 

recognition systems, and the testing files can then be used to evaluate the systems and 

yield a percent recognition rate. 

 

Other than the requirement that different sentences and different speakers be used for 

each source for any one experimental setup, the speakers and sentence waveforms in this 
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subdivision were chosen at random from the North Midland dialect region and include 

both men and women speakers.  These waveforms are then combined to create a multiple 

speaker signal for the simulated experiments and are independently output to speakers in 

the sound booth experiments. 

 

 

4.3 Processing detail 

A band pass filter from 300 to 6800 Hz is applied to each of the microphone signals to 

assure that only sounds within the capability of the sampling frequency and array 

geometry are present.  Next, the input speech signal is divided into 512 point, 32 

millisecond, triangular windowed frames.  The 32 millisecond frames are commonly used 

in speech signal processing to approximate stationarity of the speech signal.   

 

Each of the frames is run through a filter bank to produce ten bins of equal frequency 

bandwidths across the given range.  Ten bins were chosen because it was determined that 

this was the fewest number of frequency bins that still resulted in a significant 

improvement in the beamformer algorithms.  The filters used are twelfth order FIR band 

pass filters.  Given the filtered and framed data for each of the microphone signals and 

given the a priori knowledge of each signal source direction, each source is beamformed 

using the DS or MVDR algorithm for every separate filter bin.  After beamforming, the 

signal is resynthesized from the frames.  The 50% overlapping triangular windows are 

useful because they allow for simple additive resynthesis without introducing distortion.  
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Finally, using the resynthesized beamformer output signals, the enhancement algorithms 

are implemented.   

 

Similarly, the enhancement algorithms divide the signals into 512 point, 32 millisecond, 

triangular windowed frames.  Each frame is processed and the enhanced signal is 

resynthesized by overlapping and adding the frames once again. 

   



    48 

Chapter 5 Data Acquisition System Setup 

A National Instruments data acquisition system is used to create the multiple speaker 

output system.  It interfaces with the NI input and NI output cards using LabView 

software.  Through the use of the LabView software, input signals for each microphone 

record the multiple output scenarios, and Matlab Version 6.1 software is used for 

developing the algorithms and completing the analysis on those signals.  The LabView 

block diagram of the data acquisition system is shown in Figure 14. 

 

Figure 14:  LabView block diagram of data acquisition system 
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5.1 Multiple Speaker Output System 

5.1.1 Output Card 

The NI-6731 output card is used to simultaneously convert up to four acoustic digital 

files to analog voltage signals that are then routed to an amplifier.  The card uses a 16 bit 

resolution and spans ±10V with an accuracy of ±1.0mV.  The sampling frequency is set 

to 16,000 Hz. 

 

5.1.2 Speakers 

Two satellite speakers are used to output the two separate speech signals from the output 

card, depending upon the experiment being performed.  These speakers are placed at 

different locations in the sound booth with each of them facing the microphone array.  

The speakers and the microphone array are at the same elevations to simplify the setup to 

a two dimensional analysis.  To acquire the speech signals, the TIMIT speech corpus is 

utilized.  As discussed in Section 4.2.3, a sentence from a randomly chosen speaker in the 

TIMIT corpus is used as an output speech signal for each speaker.  This multiple source 

signal is then recorded on each of the microphones.  Two different people, each speaking 

an independent sentence from each other, are used from the TIMIT corpus for the speech 

signal output from the speakers.  Thus, a multiple source signal, similar to the one shown 

in Figure 15, is recorded on each of the eight microphones.
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5.2 Multiple Input System 

All of the algorithms in this research are created and implemented on a Pentium IV 

OmniTech PC using MATLAB 6.1 software.  The data acquisition system replicates the 

speech sources using a digital sound file with a digital to analog output board in series 

with amplifiers and speakers.  An array of microphones collects the speaker outputs.  The 

input signals are first amplified and then sent to an analog to digital data acquisition 

board.  The board records the data from the microphone channels using LabView 6.1 

software. 

 

5.2.1 Microphones 

Eight omnidirectional ICP® microphone/preamp modules, model number 130D10 array 

microphone with 130P series amplifier, are used to create the microphone array.  A 

constant current power supply of two to 20 mA is required to power the modules while 

creating a 45 mV/Pa sensitivity where one Pa is equivalent to 94 dB. 

 

The microphones have approximately a flat frequency response from 100 to 7,000 Hz.  

The microphone/preamp modules are linearly spaced in the array at 2.5 cm with the 

diameter of each microphone head at 6.99 mm. 

 

5.2.2 Input card 

BNC to SMB cables are used to connect the microphone/preamp modules to the input 

card.  The National Instruments (NI) 4472 for PCI is used as the input card and is 
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integrated into a Pentium IV processor OmniTech PC.  The NI 4472 is an eight channel 

dynamic signal acquisition module for PCI.  This input card supplies a 4 mA constant 

ICP current supply, which is necessary to power the microphone/preamp modules.  An 

example of the microphone signals is shown in Figure 15. 

 

 

Figure 15:  Microphone data from data acquisition system 

 

5.3 Sound Booth Setup 

Experiments were performed within an acoustically treated sound booth that is 

approximately 7.5 feet by 7.5 feet by 7 feet in height.  The sound booth has 4 inch 

insulation and is also equipped with 2 inch anti-reverberation Sonex Classic Polyurethane 

Acoustical Foam wall treatments.  The setup of the room was shown in Figure 13. 
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Chapter 6 Experimental Results 

The majority of the results from this research are produced from the simulated 

experiments.  The sound booth experiments were used as a demonstration of the 

enhancement algorithms.  SNR and segmental SNR for both the simulated and sound 

booth experiments are presented here as performance metrics for the enhancement 

algorithms.  To verify that the algorithms used enhance the simulated multiple source 

signal, listener tests to evaluate the signal quality before and after analysis are performed 

using the mean opinion score test (MOS).  In this test, the listener ranks the quality of the 

speech on a scale of one to five with one being least favorable and five being the best.  

These tests entailed 15 people that listened to the multiple source signals with and 

without enhancements. 

 

The specific signals tested with the listeners were a slice of each of the simulated three 

source experiments.  Of the five experiments, only one geometry of one interferer at π/3 

and another at –π/3 and at one magnitude level was presented to the listeners.  The 

magnitude level of the interferers corresponds to the fourth data point in the SNR and 

sSNR plots.  This slice of data resulted in seven signals per experiment: the noisy signal, 

the DS beamformed signal, the multiple source spectral subtraction using the DS 

beamformer, the multiple source Wiener filter using the DS beamformer, the MVDR 

beamformed signal, the multiple source spectral subtraction using the MVDR 

beamformer, and the multiple source Wiener filter using the MVDR beamformer.  This 

totals to 35 specific signals that were randomly presented to the listeners. 
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Once the testing was completed, each listener’s scores were tabulated and compared 

against other listener’s scores.  An overall quality score was then calculated and tabulated 

as shown in Table 5.  The beamformed signal was used as a basis to score the algorithms.  

This yields a change in improvement rather than simply comparing the raw scores 

assigned to the enhanced signals.  It also helps to normalize the listeners relative to one 

another. 

 

When reviewing the MOS testing forms, it was evident that one listener did not score the 

sentences in the correct order.  This listener had turned in the test sheets shuffled and as a 

result, these test scores are not incorporated in the analysis or in Table 5.  The test forms 

used in the analysis are found in Appendix B. 

 

 Noisy DS DS with 

Spectral 

Subtraction 

DS with 

Wiener 

Filter  

MVDR MVDR with 

Spectral 

Subtraction  

MVDR 

with 

Wiener 

Filter  

Experiment 1 1.29 2.14 2.64 2.14 2.14 2.50 2.14 

Experiment 2 2.50 3.71 4.43 4.00 3.29 4.07 4.07 

Experiment 3 1.5 2.71 3.29 3.93 2.57 3.29 2.50 

Experiment 4 2.21 3.57 4.21 3.71 3.79 4.14 3.86 

Experiment 5 1.93 3.50 3.86 3.64 3.64 4.29 3.86 

Table 4:  MOS test results 
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 DS with 

Spectral 

Subtraction − 

DS alone 

DS with 

Wiener Filter − 

DS alone 

MVDR with 

Spectral 

Subtraction − 

MVDR alone 

MVDR with 

Wiener Filter − 

MVDR alone 

Experiment 1 0.500 0.000 0.357 0.000 

Experiment 2 0.714 0.286 0.786 0.786 

Experiment 3 0.571 1.214 0.714 -0.070 

Experiment 4 0.643 0.143 0.357 0.071 

Experiment 5 0.357 0.143 0.643 0.214 

Overall Average 0.557±0.14 0.357±0.49 0.571±0.20 0.200±0.34 

Table 5:  MOS test results of average improvement 

From the MOS scores, the multiple source spectral enhancement using the MVDR 

beamformer as a basis received the most improved scores while the same algorithm with 

the DS beamformer as a basis received the second highest improvement.  The multiple 

source Wiener filter using the DS and using the MVDR also showed a net improvement, 

but with more variation in listener scores. 

 

In addition to the MOS tests, comparisons of the enhanced primary source signal to the 

noise free primary source signal are performed with the quality measures of SNR and 

segmental SNR.  With the simulated experiments, the clean reference signal is obtained 

by using the primary source signal TIMIT file as the clean signal.  With the sound booth 

experiments, this is done through recording the primary signal alone.  Recording the 

primary signal alone in the sound booth set up as opposed to analyzing the signal directly 

from the corpus compensates for channel effects imposed by the microphones. 
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The SNR and segmental SNR values for each simulated experiment and each algorithm 

are given in the plots in Appendix A.  The plots show each enhancement algorithm with 

the corresponding beamformer results so that a comparison of how much more 

enhancement produced above the beamformer can be addressed.  Examples of the data 

results from experiment 2 for both two and three speakers are shown in Figures 16 

through 19.  The overall average improvement for the algorithms across all experiments 

is tabulated in Tables 6 through 9. 
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 DS DS with 

Spectral 

Subtraction  

DS with 

Wiener 

Filter 

MVDR MVDR with 

Spectral 

Subtraction  

MVDR 

with 

Wiener 

Filter 

Experiment 1 2.58 6.28 5.68 9.21 10.96 10.56 

Experiment 2 1.89 5.78 4.65 5.96 7.49 7.39 

Experiment 3 1.13 3.79 3.48 7.18 9.32 9.10 

Experiment 4 2.11 5.48 4.61 8.14 10.04 9.87 

Experiment 5 2.38 5.36 4.35 5.06 6.38 6.24 

Overall 

Average 

2.02  

±0.56 

5.34  

±0.94 

4.55  

±0.79 

7.11  

±1.66 

8.84  

±1.87 

8.63  

±1.78 

Table 6:  Average SNR improvements for two source experiments 

 

 DS DS with 

Spectral 

Subtraction 

DS with 

Wiener 

Filter 

MVDR MVDR 

with 

Spectral 

Subtraction  

MVDR 

with 

Wiener 

Filter 

Experiment 1 2.45 4.59 4.07 6.60 6.87 5.04 

Experiment 2 3.33 5.69 4.83 4.24 5.12 5.00 

Experiment 3 1.77 3.05 2.94 3.89 4.89 4.76 

Experiment 4 3.5 5.19 4.77 4.33 5.49 5.29 

Experiment 5 3.14 5.39 4.67 4.80 5.63 5.45 

Overall 

Average 

2.84 

±0.72 

4.78  

±1.05 

4.26  

±0.80 

4.77 

±1.07 

5.60  

±0.77 

5.10  

±0.27 

Table 7:  Average segmental SNR improvements for two source experiments 
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 DS DS with 

Spectral 

Subtraction  

DS with 

Wiener 

Filter 

MVDR MVDR with 

Spectral 

Subtraction  

MVDR 

with 

Wiener 

Filter 

Experiment 1 -0.39 2.50 1.34 4.62 7.23 6.72 

Experiment 2 0.79 2.64 1.72 4.47 5.90 5.58 

Experiment 3 -0.10 0.86 0.29 2.18 5.89 4.97 

Experiment 4 -0.74 0.70 0.63 3.28 5.50 5.30 

Experiment 5 -0.05 2.01 1.03 3.78 6.04 5.41 

Overall 

Average 

-0.10 

±0.57 

1.74  

±0.91 

1.00  

±0.56 

3.67  

±0.99 

6.11  

±0.65 

5.60  

±0.67 

Table 8:  Average SNR improvements for three source experiments 

 

 DS DS with 

Spectral 

Subtraction  

DS with 

Wiener 

Filter 

MVDR MVDR with 

Spectral 

Subtraction  

MVDR 

with 

Wiener 

Filter 

Experiment 1 0.39 1.97 0.98 2.80 4.96 4.49 

Experiment 2 1.28 2.78 1.82 3.92 5.23 4.84 

Experiment 3 0.60 1.24 0.58 1.54 3.14 2.70 

Experiment 4 0.81 1.78 1.21 2.86 4.50 4.16 

Experiment 5 0.44 2.15 1.01 3.96 4.65 2.53 

Overall 

Average 

0.70  

±0.36 

1.98  

±0.56 

1.12  

±0.45 

3.02  

±0.99 

4.50  

±0.81 

3.74  

±1.06 

Table 9:  Average segmental SNR improvements for three source experiments 

 

   



    58 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

angle1=-pi/3 angle2=pi/3

original signal SNR (dB)

en
ha

nc
ed

 s
ig

na
l S

N
R 

(d
B)

multi-source spectral subtraction
multi-source Wiener filter       
DS beamformer                    

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

12

angle1=-pi/3 angle2=pi/3

original signal segmental SNR (dB)

en
ha

nc
ed

 s
ig

na
l s

eg
m

en
ta

l S
N

R 
(d

B)

multi-source spectral subtraction
multi-source Wiener filter       
DS beamformer                    

 

Figure 16:  Results example of DS based enhancement algorithms for two sources in 

experiment 2 
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Figure 17:  Experiment 2 MVDR based enhancement algorithms for two sources 
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Figure 18:  Experiment 2 DS based enhancement algorithms for three sources 
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Figure 19:  Experiment 2 MVDR based enhancement algorithms for three sources 
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After reviewing the SNR and sSNR data, overall, the best improvements were found for 

the experiments where the separation between sources was the greatest and for a limited 

SNR and sSNR range.  This maximum improvement range varied from experiment to 

experiment but remained generally the same range across geometries for a specific 

experiment. 

 

The results of the sound booth experiment are shown in Figure 20 and Figure 21.  It is 

shown that there is an improvement in SNR and segmental SNR for four of the five data 

points associated with the MVDR based enhancement algorithms and an improvement in 

all the data points for the DS based ones.  The DS based algorithms also had a larger 

increase in SNR and segmental SNR. 
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Figure 20:  Sound booth experiment results for MVDR based enhancement algorithms 
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Figure 21:  Sound booth experiment results for DS based enhancement algorithms 

   



    65 

Chapter 7 Discussion 

 

From the results of the simulated experimental SNR and sSNR data, it can be seen that 

the multiple source enhancement algorithms worked most efficiently for a specific SNR 

and sSNR range.  As shown in the results, there is significant overall improvement by the 

enhancement algorithms above the beamformer alone for both the two source and three 

source experiments and across all geometries.  However, it is important to note that the 

multiple source enhancement algorithms perform best for an intermediate range of SNR 

and sSNR’s.  The amount of this improvement decreases when the interfering source 

power is minimal, as the SNR and segmental SNR increases.  This is because the 

algorithm is dependent upon the interfering talkers’ signal estimation.  When the 

interfering talkers’ signal power increases, the parallel beamformers are able to obtain 

better noise signal estimates.  However, as the interfering signals’ power become much 

larger, as is true for extremely small SNR’s, the algorithm does not perform well due to 

the inability of the beamformer to obtain an adequate estimate of the primary signal.  

These characteristics are summarized in Figure 22 and reflected in the results in 

Appendix A. 
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Figure 22:  Illustration example of optimal performance sSNR range 

 

The MOS results show that the multiple source algorithms increase signal quality in a 

multiple speaker environment.  The importance of the results is that the listeners 

perceived an increase in signal quality for all of the algorithms evaluated.  In general, the 

data points used in the MOS testing were within the range that the SNR and sSNR results 

showed the algorithms performed well.  The multiple source Wiener filter algorithm 

showed less of an improvement compared with the spectral subtraction algorithms.  
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Although the Wiener filter suppresses the noise spectral characteristics, it also introduces 

“musical” tones or distortions into the signal.  These tones may have been the reason the 

listeners had more variation in scores and did not feel the quality of the signal increased 

as much as the multiple source spectral subtraction methods.  “Musical” tones are also 

present in the spectral subtraction method due to the spectral smoothing, but in the results 

presented here, they are not as noticeable compared with the Wiener filter output signals. 

 

The sound booth experiment is used as a demonstration of the enhancement algorithms’ 

capabilities.  In Figure 20 and Figure 21, it is shown that there is a slight overall 

improvement in both the SNR and sSNR by the multiple source enhancement algorithms 

above the beamformer alone.  Because some of the beamformer data points do not 

achieve an overall improved SNR and segmental SNR, the results also show that the 

beamformers can be further optimized for the given microphone array. 
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Chapter 8 Conclusion 

The use of multiple, parallel beamformers integrated with a multiple source Wiener filter 

and multiple source spectral subtraction algorithm, as presented in this research, shows 

substantial improvement in the SNR and segmental SNR for a range consistent with a 

multiple interfering speaker environment.  In the multiple speaker environment, 

interfering talkers will have enough power to generate an acceptable beamformed signal 

estimate for the enhancement algorithms.  As a result, the speech enhancement methods 

presented in this paper are able to contend with nonstationary, broadband noise that 

occurs in a multiple speaker environment. 

 

Further work is being conducted to research the multiple speaker environment.  In 

particular, the integration of other traditional enhancement methods into the multiple 

source domain using parallel beamformers and the utilization of a more powerful 

beamformer as the basis of the algorithms are being researched.  To create a more robust 

algorithm, the use of a priori knowledge of the source directions would be eliminated 

with the integration of a source location algorithm like the Root-MUSIC algorithm.  

Additionally, reverberation signal adaptations could be incorporated into the iterative 

analysis of the algorithms, creating the ability to work well in an acoustically imperfect 

room, as is true for most “real world” rooms.  More experimental runs using the sound 

booth and a conference room can be performed to test these improvements. 

 

   



    69 

References 

 

Berouti, M. G., R. Schwartz, and J. Makhoul; “Enhancement of speech corrupted by 
acoustic noise;” IEEE Transactions on Acoustics, Speech, and Signal Processing, 
pp. 208-211, 1979. 

 
Boll, S. F.; “Suppression of acoustic noise in speech using spectral subtraction;” IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 27, pp. 113-120, 
April 1979. 

 
Bitzer, Joerg, K. U. Simmer, and K. D. Kammeyer; “Multi-microphone noise reduction 

by post-filter and superdirective beamformer;” Proceedings of the International 
Workshop on Acoustic Echo and Noise Control, pp. 100-103, September 1999. 

 
Bitzer, Joerg, Klaus Uwe Simmer, Karl-Dirk Kammeyer; “Multi-microphone noise 

reduction techniques as front-end devices for speech recognition;” Speech 
Communication, vol. 34, pp. 3-12, 2001. 

 
Brandsein, M., J. E. Adcock, and H. F. Silverman; “A practical time-delay estimator for 

localizing speech sources with a microphone array;” Computer Speech and 
Language, vol. 9, pp. 153-169, 1995. 

 
Brandstein, M. and D. Ward, eds.; Microphone Arrays: Signal Processing Techniques 

and Applications; Springer, New York:  2001. 
 
Carnero, Benito and Andrzej Drygajlo; “Perceptual speech coding and enhancement 

using frame-synchronized fast wavelet packet transform algorithms;” IEEE 
Transactions on Signal Processing, vol. 47, pp. 1622-1635, 1999. 

 
Deller, J.R., J. Hansen, and J. Proakis; Discrete-Time Processing of Speech Signals; 

IEEE Press, New York: 2000. 
 
Dundgeon, Dan E. and Don H. Johnson; Array Signal Processing: Concepts and 

Techniques; PRT Prentice Hall, Englewood Cliffs, NJ: 1993. 
 
Elledge, Mark, et al; “Real-time implementation of a frequency-domain beamformer on 

the TI C62X EVM;” Texas instruments DSPSFest 2000. 
 
Friedlander, B. and A. J.Weiss; “Direction finding for wide-band signals using an 

interpolated array;” IEEE Trans. Signal Processing, vol. 41, pp. 1618–1634, April 
1993. 

 
Frost III, O.L.; “An algorithm for linearly constrained adaptive array processing;” 

Proceedings of the IEEE, vol. 60, pp. 916-935, 1972. 

   



    70 

 
Garofolo, J.,  L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue; “TIMIT 

Acoustic-Phonetic Continuous Speech Corpus;”  Linguistic Data Consortium, 
1993. 

 
Hansen, J. H. L.; and M. A. Clements; “Iterative speech enhancement with spectral 

constraints;” IEEE Transactions on Acoustics, Speech, and Signal Processing, 
vol. 1, pp. 189-192, 1987. 

 
Hu, H. T.,  F. J. Kuo, and H. J. Wang; “Supplementary schemes to spectral subtraction 

for speech enhancement;” Speech Communication, vol. 36, pp. 205-218, 2002. 
 
Itakura; F.; “Minimum prediction residual applied to speech recognition;” IEEE 

Transactions on Acoustics, Speech and Signal Processing, vol. 23, pp. 67-72, 
1975. 

 
Kajita, Shoji, Kazuya Takeda, and Fumitada Itakura; “Subband-crosscorrelation analysis 

for robust speech recognition;” International Conference on Spoken Language 
Processing, ICSLP, Proceedings, vol. 1, pp. 422-425, 1996. 

 
Kellermann, W.; “Analysis and design of multirate systems for canceling of acoustic 

echoes;” Proceedings of IEEE International Conference on Acoustics, Speech, 
and Signal Processing, pp. 2570-2573, 1988. 

 
Lim, J. S. and A. V. Oppenheim; “All-pole modeling of degraded speech;”  IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 26, pp. 197-210, 
June 1978. 

 
Marro, C., Y.Mahieux, and K. U. Simmer, “Analysis of noise reduction and 

dereverberation techniques based on microphone arrays with postfiltering;”  IEEE 
Transactions on Speech and Audio Processing, vol. 6, pp. 240-259, May 1998. 

 
McCowan, I.A., C. Marro, and L. Mauuary; “Robust speech recognition using near-field 

superdirective beamforming with post-filtering;” Proceedings of IEEE 
International Conference on Acoustics, Speech, and Signal Processing, pp. 1723-
1726, 2000. 

 
McCowan, I.A. and S. Sridharan; “Microphone array sub-band speech recognition;” 

Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing, pp. 185-188, 2001. 

 
Omologo, M., et al; “Microphone array based speech recognition with different talker-

array positions;” Proceedings of IEEE International Conference on Acoustics, 
Speech, and Signal Processing, pp. 227-230, 1997. 

 

   



    71 

Plomp, R.; “A signal-to-noise ratio model for the speech-reception threshold of the 
hearing impaired;” Journal of Speech and Hearing Research, vol. 29, pp. 146-154, 
1986. 

 
Quackenbush, S.R., T. P. Barnwell, and M. A. Clements; Objective Measures of Speech 

Quality; Englewood Cliffs, J.J.:  Prentice Hall, 1998. 
 
Rabinkin, Daniel, et al.; “A DSP implementation of source location using microphone 

arrays;” Proceedings of the SPIE, vol. 2846, pp. 88-99, Denver, Colorado, August 
1996. 

 
Rabinkin, Daniel, R. Renomeron, J. French, and J. Flanagan; "Optimum microphone 

placement for array sound capture;" Proceedings of SPIE, vol. 3162, pp. 227-239, 
1997. 

 
Rao, Bhaskar D. Hari, K V S.; “Performance analysis of root-music;” Asilomar 

Conference on Circuits, Systems & Computers, vol. 2, pp. 578-582, 1985. 
 
Ris, Christophe and Stephane Dupont; “Assessing local noise level estimation methods: 

Application to noise robust ASR;” Speech Communication, vol. 34, pp. 141-158, 
2001. 

 
Ryan, James G. and R. Goubran; “Near-field beamforming for microphone arrays;” 

Proceedings of the IEEE International Conference on Acoustics, Speech, and 
Signal Processing, pp. 363-366, 1997. 

 
Saruwatari, H., et al; “Speech enhancement using nonlinear microphone array with noise 

adaptive complementary beamforming;” Proceedings of IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pp.1049-1052, 2000. 

 
Steinberg, B.D.; Principles of Apertre and Array System Design, John Wiley and Sons, 

1976. 
 
Svaizer, Piergiorgio, Marco Matassoni, and Maurizio Omologo; “Acoustic source 

location in a three dimensional space using crosspower spectrum phase;” 
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing, pp. 231-234, 1997. 

 
Tager, W.;  “Near field superdirectivity (NFSD);” IEEE Transactions on Acoustics, 

Speech, and Signal Processing, pp. 2045-2048, 1998. 
 
Wang, A., et al.; “Calibration, optimization, and DSP implementation of microphone 

array for speech processing;”  IEEE, pp. 221-230, 1996. 
 

   



    72 

Wang, D. L. and J. S. Lim; “The unimportance of phase in speech enhancement;” IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 37, pp. 679-681, 
August 1982. 

 
Wang, Fang-Ming, et al.; “Frequency domain adaptive postfiltering for enhancement of 

noisy speech;” Speech Communication; vol. 12, pp. 41-56, 1993. 
 
Wang, H. and M. Kaveh; “Coherent signal-subspace processing for the detection and 

estimation of angles of arrival of multiple wideband sources;” IEEE Transactions 
on Acoustics, Speech, and Signal Processing; vol. 33, pp. 823–831, Aug 1985. 

 
Ward, D.B., Rodney A. Kennedy, and Robert C. Williamson; “Theory and design of 

broadband sensor arrays with frequency invariant far-field beam patterns;” 
Journal of Acoustical Society of America; vol. 97, pp. 1023-1034, February 1995. 

 
Weiss, S., M. Harteneck, and R. W. Stewart; “On implementation and design offFilter 

banks for subband adaptive systems;” IEEE Workshop on Signal Processing 
Systems, pp. 172-181, October 1998. 

 
Widrow, Bernard; “A microphone array for hearing aids;” IEEE Circuits and Systems, 

vol. 1, no. 2, pp. 26-32, Second Quarter 2001. 
 
Wu, Wen-Rong and Po-Cheng Chen; “Subband kalman filtering for speech 

enhancement;” IEEE Transactions on Circuits and Systems II-Analog and Digital 
Signal Processing; vol. 45, pp. 1072-1083, August 1998. 

   



    73 

Appendix A:  Simulated Data Experimental Results 

 

Two source experiments 

Experiment 1: 

 Primary speaker TIMIT ID = dr3 mkch0 SI2008 

 Second speaker TIMIT ID= dr3 fcmh0 SX194 

Experiment 2: 

 Primary speaker TIMIT ID = dr3 fkms0 SX410.WAV 

 Second speaker TIMIT ID= dr3 mkch0 SX298.WAV 

Experiment 3: 

 Primary speaker TIMIT ID = dr3 mctw0 SI2003.WAV 

 Second speaker TIMIT ID= dr3 mglb0 SI904.WAV 

Experiment 4: 

 Primary speaker TIMIT ID = dr3 mjvw0 SX293.WAV 

 Second speaker TIMIT ID= dr3 fcmh0 SI1454.WAV 

Experiment 5: 

 Primary speaker TIMIT ID = dr3 fcmh0 SX374.WAV 

 Second speaker TIMIT ID= dr3 mctw0 SI743.WAV 
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Three source experiments 

Experiment 1: 

 Primary speaker TIMIT ID = dr3 mkch0 SI2008 

 Second speaker TIMIT ID= dr3 fcmh0 SX194 

 Third speaker TIMIT ID= dr3 mglb0 SA2 

Experiment 2: 

 Primary speaker TIMIT ID = dr3 fkms0 SX410.WAV 

 Second speaker TIMIT ID= dr3 mkch0 SX298.WAV 

 Third speaker TIMIT ID= dr3 mctw0 SI743.WAV 

Experiment 3: 

 Primary speaker TIMIT ID = dr3 mctw0 SI2003.WAV 

 Second speaker TIMIT ID= dr3 mglb0 SI904.WAV 

 Third speaker TIMIT ID= dr3 mjvw0 SX383.WAV 

Experiment 4: 

 Primary speaker TIMIT ID = dr3 mjvw0 SX293.WAV 

 Second speaker TIMIT ID= dr3 fcmh0 SI1454.WAV 

 Third speaker TIMIT ID= dr3 mglb0 SI1534.WAV 

Experiment 5: 

 Primary speaker TIMIT ID = dr3 fcmh0 SX374.WAV 

 Second speaker TIMIT ID= dr3 mctw0 SI743.WAV 

 Third speaker TIMIT ID= dr3 mjvw0 SA2.WAV 
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Experiment 2: 
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Experiment 3: 
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Experiment 5: 
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Three source experiments:  Experiment 1: 
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Experiment 2: 
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Experiment 3: 
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Appendix B:  MOS Test Form 
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Mean Opinion Score Test  

 

 

 

 Rating Speech Quality Level of Distortion 

 

 5 Excellent Imperceptible 

 4 Good Just perceptible but not annoying 

 3 Fair Perceptible and slightly annoying 

 2 Poor Annoying but not objectionable 

 1 Unsatisfactory Very annoying and objectionable 

 

 

Circle the rating of the speech signal sample 
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