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Abstract—Acoustic-to-articulatory inversion, the estimation of
articulatory kinematics from an acoustic waveform, is a challeng-
ing but important problem. Accurate estimation of articulatory
movements has the potential for significant impact on our under-
standing of speech production, on our capacity to assess and treat
pathologies in a clinical setting, and on speech technologies such
as computer aided pronunciation assessment and audio-video syn-
thesis. However, because of the complex and speaker-specific re-
lationship between articulation and acoustics, existing approaches
for inversion do not generalize well across speakers. As acquir-
ing speaker-specific kinematic data for training is not feasible
in many practical applications, this remains an important and
open problem. This paper proposes a novel approach to acoustic-
to-articulatory inversion, Parallel Reference Speaker Weighting
(PRSW), which requires no kinematic data for the target speaker
and a small amount of acoustic adaptation data. PRSW hypoth-
esizes that acoustic and kinematic similarities are correlated and
uses speaker-adapted articulatory models derived from acousti-
cally derived weights. The system was assessed using a 20-speaker
data set of synchronous acoustic and Electromagnetic Articulogra-
phy (EMA) kinematic data. Results demonstrate that by restrict-
ing the reference group to a subset consisting of speakers with
strong individual speaker-dependent inversion performance, the
PRSW method is able to attain kinematic-independent acoustic-
to-articulatory inversion performance nearly matching that of the
speaker-dependent model, with an average correlation of 0.62 ver-
sus 0.63. This indicates that given a sufficiently complete and
appropriately selected reference speaker set for adaptation, it is
possible to create effective articulatory models without kinematic
training data.

Index Terms—Acoustic-to-articulatory inversion, electromag-
netic articulography.

I. INTRODUCTION

HUMAN speech is generated through the simultaneous
movement of multiple articulators, including the tongue,
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jaw and lips, controlled together through the speech production
process. Accurate knowledge of articulatory movements repre-
sents high-level information about speech production that can
be of great value to many speech technologies and clinical appli-
cations. However, the reversal of the speech production process
to estimate articulatory movements from speech acoustics is a
challenging task requiring speaker-specific models. This task,
referred to as acoustic-to-articulatory inversion, can help us un-
derstand and model the underlying latent variables involved with
speech production at a deeper level.

Example applications of articulatory inversion include the
integration of articulatory information with acoustic features
to improve the performance of automatic speech recognition
systems [1], [2]. In addition, articulatory information can im-
prove the quality of synthesized speech [3] or synthesized video,
such as facial animation in films and video-games [4]. Visualiz-
ing the position of the articulators derived from acoustic signal
is extremely useful in speech pathology assessment and treat-
ment systems, as well as in Computer Aided Language Learning
(CALL) and Computer Aided Pronunciation Training (CAPT)
systems, where a reliable inverse mapping can enable more
accurate pronunciation assessment and correspondingly more
specific corrective feedback [5]–[9].

Current methods for acoustic-to-articulatory inversion are
based on a variety of mapping techniques including codebook
search, neural networks, Kalman filtering, GMMs, and HMMs
[10]–[16]. Nearly all these methods use parallel articulatory and
acoustic training data from a single subject to learn the map-
ping between acoustic and articulatory spaces, and then perform
inversion on the acoustic data of the same subject. Variabil-
ity in physical vocal tract configurations, as well as speaker-
specific relationship between acoustics and articulation, cause
the mapping from acoustic to articulatory space to vary signifi-
cantly across subjects. Because of this, most existing approaches
for inversion work do not generalize to new speakers without
kinematic data.

However, the acquisition and measurement of kinematic data
is much more problematic than acoustic data, with higher equip-
ment costs and significantly greater invasiveness and inconve-
nience to speakers. As such, most practical applications of artic-
ulatory inversion would not allow for the collection of detailed
kinematic data on an individual user basis. This would include,
for example, automatic speech recognition methods that wish to
benefit from articulatory-derived features, or accent modifica-
tion applications for CALL that target identification of specific
articulatory causes underlying pronunciation errors.
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Recent research has begun to address this problem through
what is sometimes termed speaker-independent inversion, which
we refer to as kinematic-independent, defined as acoustic-to-
articulatory inversion on a new speaker for whom there is no
kinematic data and a relatively small amount of labelled acous-
tic adaptation data. Dusan and Deng have applied vocal tract
length normalization to their speech inversion model [13], with
some improvement. Hiroya and Honda have also introduced a
speaker adaptation technique based on an HMM-based speech
production model [17] which models a linear relationship be-
tween the speech spectrum and articulatory features in each
state. In addition, Hueber et al. have combined voice conversion
and acoustic-to-articulatory inversion into a single GMM-based
mapping framework [18], with good initial results using two
speakers’ data.

In this paper, a robust kinematic-independent inversion
method called Parallel Reference Speaker Weighting (PRSW)
is proposed. Specifically, a reference speaker weighting (RSW)
adaptation approach [19] is modified to a parallel structure in
which synchronized speaker-dependent acoustic and articula-
tory models on a set of reference speakers are adapted in parallel.
Under the hypothesis that acoustic and articulatory similarities
are correlated, the PRSW method learns adaptation weights in
the acoustic model space and then applies them in the articula-
tory model space. This creates a speaker-specific inversion map-
ping that can estimate articulatory trajectories for new speakers
who have no kinematic training data.

The article is organized as follows: Section II introduces
the HMM-based acoustic-to-articulatory inversion approach.
Section III presents theoretical aspects of the proposed PRSW
adaptation techniques. Experimental set up and practical imple-
mentation are described in Section IV. Results and discussion
are given in Section V, with conclusion in Section VI.

II. METHODS

A. HMM Based Inversion Framework

Due to the ill-posed nature of the inversion problem, it can
be beneficial to connect the articulatory and acoustic domains
through a phoneme or state level representation, instead of seek-
ing a direct mapping. In this work, we use a synchronized
Hidden Markov Model (HMM) framework, similar to that of
Zhang and Renals [16], to tie the two domains at the level of
individual phoneme states in a sequential model. The diagram
of such a parallel acoustic-articulatory model is illustrated in
Fig. 1. In this approach, two separate HMMs are built, one in
the acoustic observation space and one in the articulatory obser-
vation space, with these models explicitly tied through state se-
quence synchronization. Parallel acoustic and articulatory data
are used to train the acoustic and articulatory HMMs separately.
Within each state, a GMM is used for modeling the statistical
distribution of the feature vectors in each domain, although the
approach is generalizable and could be extended to other state
observation models such as deep neural networks [20]. The
number of mixture components differs between the acoustic
and articulatory model domains, because the acoustic features
have a more complex distribution than the trajectory patterns

Fig. 1. Diagram of the HMM-based articulatory-to-acoustic inversion system.

of individual articulatory features [16]. In the present work the
acoustic HMM uses a GMM with seven mixture components,
the number of mixture components being empirically tuned to
balance the amount of training data, with inversion results show-
ing a slight decline for a higher number of mixture components
after that point. In the inversion stage, the test speech signal is
input to the acoustic HMM to compute an optimal HMM state
sequence using the Viterbi algorithm, and the correspondingly
aligned articulatory HMMs can be used to recover the articu-
latory trajectory. The articulatory HMM generates a smoothed
position trajectory, using the articulatory means combined with
a dynamic smooth window of the articulatory distribution as in
[21], based on the maximum likelihood parameter generation
algorithm.

1) Training: The acoustic and articulatory HMMs are
trained separately. The acoustic HMM is trained first using the
maximum likelihood Expectation Maximization algorithm, af-
ter which the trained acoustic models are used to calculate state
level alignments to the frame-by-frame data. These alignments
are then used with the articulatory data to directly calculate the
articulatory HMM state means and variances.

2) Forced Alignment: In the inversion stage, the speech sig-
nal and phone labels are input into the acoustic HMM, and a
state sequence is produced through forced alignment with the
Viterbi algorithm. The articulatory states matching the corre-
sponding acoustic states are concatenated into an articulatory
state sequence.

3) Maximum Likelihood Parameter Generation Using Dy-
namic Features: Once the articulatory state alignment is gen-
erated, the recovery algorithm needs to estimate a smooth and
slow changing articulatory trajectory from the HMM state se-
quence. As described in [21], the observation data sequence O
is estimated by maximizing P (O|Q, λ) with respect to O for
a fixed state sequence, Q = [ q1 q2 · · · qT ] where λ represents
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Fig. 2. Reference speaker weighting.

the model parameters. The result is that a smoothly varying ML
estimate of the articulatory trajectory can be recovered from the
Gaussian PDF state sequences via

C = D−1Σ
(
DT

)−1
DΣ−1UT (1)

where D is a fixed static-to-dynamic computation matrix [21],
Σ sigma is a block-diagonal matrix consisting of concatenated
state covariance matrix, and U is a matrix of concatenated mean
vectors.

B. Reference Speaker Weighting

The proposed approach is based on RSW adaptation [19].
RSW is a rapid speaker adaptation approach originally designed
for small amounts of adaption data, typically 5-10 seconds of
speech. The idea is based on model combination, and the small
number of parameters allows this to work effectively even with
limited adaptation data. Under the assumption that pronunci-
ation patterns vary in similar ways across speakers, pronunci-
ation variants of phonemes that are unseen in the adaptation
data can still be correctly adjusted. Creating an RSW adapta-
tion framework requires a set of individual speaker-dependent
models across a reasonably diverse reference speaker set as a
starting point for estimating the parameters of a new speaker.

The basic idea of this method is shown in Fig. 2. A new
speaker’s model can be estimated from a weighted combination
of reference speakers. Each reference speaker is represented by
a supervector, which is constructed by concatenating the mean
vectors of all acoustic model parameters.

RSW estimates the model of a new speaker from the span
of the K reference speaker models. Speaker-dependent models
are trained using HMMs. Supervectors are used to represent the
HMM model parameters. Using the reference speakers’ super-
vectors, a set of maximum likelihood weights is estimated to
match the new speaker’s adaptation data by using the expecta-
tion maximization algorithm. The new speaker’s model can then
be constructed from a linear combination of reference speakers’
model using these weights.

Let Y = {y1 , y2 , . . . ,yK } be the set of reference speaker
supervectors, defined as the concatenation of the Gaussian
means from all state models in sequence. The RSW estimate
of a new speaker’s supervector is

s ≈ srsw =
K∑

k=1

wkyk = YW (2)

and the mean vector of the r th Gaussian is

μ(rsw)
r =

K∑

k=1

wkymr = YrW (3)

where m is the mixture index, W = [w1 ,w2 , . . . ,wK ]T is the
weight vector and r is the number of Gaussian mixtures. Given
adaptation data O = [o1 o2 · · · oT ], the Maximum Likelihood
estimate of w can be found by solving a system of K linear
equations,

w =

[
R∑

r=1

(
T∑

t=1

γt (r)

)

YT
r C−1

r Yr

]−1

×
[

R∑

r=1

YT
r C−1

r

(
T∑

t=1

γt (r)ot

)]

(4)

where γt(r) is the posterior probability of observing Ot in the rth
Gaussian, and Cr is the covariance matrix of the r th Gaussian.

RSW uses the model parameters of selected speakers to cre-
ate a composite model for new unseen speakers. RSW is closely
related to another fast speaker adaptation method, Eigenvoice,
which uses principal component analysis to find a set of or-
thogonal basis vectors to create reference vectors. Both of these
methods require the model of a new speaker to lie on the span
of some reference vectors. In our acoustic-to-articulatory inver-
sion application, RSW is chosen because we have one-to-one
matched acoustic and articulatory models for individual speak-
ers, which allows us to use the information from the acoustic
space to adapt the model in articulatory space.

C. Parallel Reference Speaker Weighting

The proposed PRSW approach is based on the fundamental
assumption that similarity between speakers in the acoustic do-
main is highly correlated to similarity between speakers in the
articulatory domain. In the PRSW approach, a new speaker with
no kinematic data is compared to a set of reference speakers in
the acoustic domain, weights for these speakers are estimated
using a maximum likelihood approach, and then weighted com-
posite models are created from these weights in both the acoustic
and articulatory domains.

In PRSW, the speaker combination that generates the new
speaker in acoustic space is assumed to be consistent with those
in the articulatory space. The new speaker’s articulatory realiza-
tion can be recovered from the reference speakers’ articulatory
model by using acoustically derived weights. In the inversion
stage, identical weights are used in the articulatory space. Let
A = [a1 a2 · · · aK ] be the set of reference speaker articula-
tory super vectors. Then the RSW estimate of the new speaker’s
articulatory supervector is

Aunknown ≈
K∑

k=1

wkak = AW, (5)

where W is the same weight matrix derived from acoustics
through equation (3). The new speaker’s articulatory move-
ments can be estimated from the adapted model by using the
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Fig. 3. Parallel RSW.

Fig. 4. EMA-MAE sensor placement.

maximum likelihood parameter generation algorithm described
above. Fig. 3 illustrates this method for constructing an acoustic-
articulator inversion model using the new PRSW approach.

To implement PRSW, parallel acoustic and articulatory
HMMs are trained for each reference speaker. RSW is used
to adapt a new acoustic model for the unknown speaker. For
new speakers without articulatory data, weights are calculated
from acoustic adaptation data and these weights are used to
generate both acoustic and articulatory models.

III. EXPERIMENTAL STUDY

A. Data Set

The Marquette EMA-MAE corpus [22] includes synchronous
acoustic and three-dimensional kinematic data collected via
Electromagnetic Articulography (EMA) at 400 Hz for 40
speakers, 20 native English speakers and 20 native Mandarin
speakers speaking English. In the present work we use only
the 20 native English speakers’ data. Acoustic records were
obtained using a cardioid pattern directional condenser micro-
phone positioned approximately 1 meter from participants. The
corpus includes approximately 45 minutes (198 ± 5 utterances)
of synchronized acoustic and kinematic data for each speaker,
including word, sentence, and paragraph level speech samples.
Each sensor records three-dimensional position as well as
two-dimensional orientation representing orientation of the
sensor’s transverse plane. For each speaker, the data have been
separated into training (90%) and test (10%) sets.

As shown in Fig. 4, articulatory sensors included the jaw (MI)
(labial surface of lower front incisors), lower lip (LL), upper lip
(UL), tongue dorsum (TD), and tongue tip (TT), all placed in the

TABLE I
ARTICULATORY FEATURES

Description

VT1 Tongue dorsum normalized horizontal position
VT2 Tongue dorsum vertical height to hard palate
VT3 Tongue body normalized horizontal position
VT4 Tongue body vertical height to hard palate
VT5 Tongue apex normalized horizontal position
VT6 Tongue apex vertical height to hard palate
VT7 Normalized horizontal lip protrusion
VT8 Normalized vertical lip separation

midsagittal plane. In addition, there were two lateral sensors, one
(LC) at the left corner of the mouth to help indicate lip rounding
and one (LT) in the left central midpoint of the tongue body to
help indicate lateral tongue curvature.

Each subject’s data includes a bite-plate record that records
the position of two reference sensors fixed in a dental impres-
sion. The placement of these two sensors, in addition to the
primary reference sensor at the subject’s forehead, allows for a
geometric bite-plate calibration that orients the sensor Carte-
sian coordinate system so that the x-y plane represents the
midsagittal plane and the x-z plane represents the maxillary
occlusal plane. In addition, a palate trace is recorded that maps
each subject’s hard palate.

B. Acoustic and Articulatory Features

Acoustic features include a standard set of 12 Mel frequency
cepstral coefficients (MFCCs) plus energy, along with delta
and delta-delta coefficients, giving a 39-dimensional acoustic
feature vector. Hamming windowed frames of length 25 ms
were used, with a step size of 10 ms. Articulatory features
are calculated from EMA kinematic sensor data that are scale-
normalized, with vertical features as differential distances to the
hard palate data for the subject. These features are shown in
Table I.

Articulatory feature normalization is implemented using the
distance between the central incisors and the midsagittal point
between the first molars from each speaker’s bite plate record
as a dividing constant for horizontal positions, giving relative
rather than absolute information about the tongue’s position
relative to the vocal tract. The horizontal (x-axis) variables
VT1, 3, 5, and 7, are all calculated directly from sensor position
divided by this normalization constant. The vertical (y-axis)
variables VT2, 4, and 6 are computed as the vertical distance
between the sensor position and the palate, representing vocal
tract height at the sensor positions, including two midsagittal
positions and one lateral position. Palate height at the sensor’s
location is determined using a thin-plate spline representation
[23] of the subject’s palate trace record. Lip protrusion VT7
is taken directly from the sensor x position without any
normalization, and vertical lip separation VT8 is calculated as

V T8 =
(ULy − LLy ) − (ULy − LLy )closed position

(ULy − LLy )max
(6)
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Fig. 5. Experimental paradigm.

which is lip separation scaled to a [0,1] working space.

C. Evaluation

Typical metrics for performance evaluation of acoustic-to-
articulatory inversion include the root-mean-square (RMS) error
as well as correlation between the actual and estimated articula-
tory position. However, for a kinematic-independent framework,
two studies [18], [24] have shown that average RMS error is not
suitable for evaluating the cross-speaker acoustic-to-articulatory
inversion due to differences in scaling and dynamic range caused
by a lack of kinematic data. Without articulatory data for the test
speaker the estimated articulatory outputs represent the correct
movement patterns but not necessarily the new speaker’s artic-
ulatory mean and variance, which are impacted by both phys-
iological differences and sensor placement differences across
subjects.

Thus the correlation metric, which is a measure of overall
similarity between the reference and the estimated trajectories,
is used as the primary evaluation criterion for cross-speaker
inversion results. Correlation is given directly by

r =

∑m
i=1

(
f (xi) − f (xi)

)
(yi − yi)

√
∑m

i=1

(
f (xi) − f (xi)

)2√∑m
i=1 (yi − yi)

2
(7)

where f(xi) and yi are the means of the estimated and actual
articulatory values, respectively.

As a secondary evaluation metric, we use normalized RMS
error to remove the mean bias of articulatory trajectories. De-
noting the actual values of the articulatory measure as y and
the corresponding values of the estimated output as f(x), the

normalized RMS error over the whole test set is calculated as:

E =

√
1
M

∑m
i=1 (f(xi) − yi)

2

std(y)
(8)

where m is the number of examples in the test set, yi is the
true articulatory variable value, f(xi) is the inversion output,
and std(y) is the standard deviation of the articulatory variable
across the full test set. Note that this metric is still negatively
impacted by any bias or dynamic range differences between the
estimates and the true kinematic data.

A good articulatory inversion system is expected to obtain
low RMS error and high correlation with respect to real articu-
latory data. In prior work, several different EMA datasets have
been used across various different methodologies, which makes
it difficult to compare results or have a strong frame of reference
for expected performance. However, MOCHA-TIMIT has been
the most widely used EMA dataset. The lowest RMS error re-
ported is from Richmond’s trajectory mixture density networks
[12] which is 0.99 mm with correlation 0.79 on the MNGU0
speaker data. For the kinematic-independent inversion, Ghosh
and Narayanan [24] achieved average correlation 0.4 with two
speakers.

D. Experimental Scheme

Several experimental comparisons were conducted to
evaluate the proposed PRSW method. An overview of the ex-
perimental paradigm is illustrated in Fig. 5. In building compar-
ative models, individual speaker-dependent inversion models
(SDIMs) were created for all 20 speakers, as well as a single uni-
versal inversion model (UIM) that was built from the combined
data, each based on the method shown in Fig. 1. Following this, a
new acoustically adapted and kinematic data independent model
was created for each speaker, by considering the 19 remaining
speakers as the reference speaker set, and using the PRSW ap-
proach to build a new inversion model from these, using the new
speaker’s acoustic adaptation data but no kinematic data.

The underlying goal is for the adapted PRSW model to
achieve inversion performance significantly better than the UIM
in which all speakers’ parallel acoustic-articulatory data are used
and approaching that of the speaker-dependent model in which
every individual speaker’s parallel acoustic-articulatory data are
used. The universal model is not quite a true lower bound on per-
formance, since training data included the test speaker’s acous-
tic and articulatory data—it was preferred to have a single UIM
rather than 20 different speaker-independent models each with
one speaker removed, since this has only a small impact on
performance and is much simpler to implement.

Experimental scenarios include the following:
1) Baseline experiment comparing the SDIM, UIM and

PRSW inversion performance across 20 native English
speakers.

2) A reduced reference speaker implementation, using sev-
eral speaker selection methods. (Using the baseline result
findings that the quality of the inversion models of the
reference speakers impacted adaptation performance, as
shown in the next section.)
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Fig. 6. Baseline correlation results. Mean correlations are SDIM = 0.63, PRSW = 0.55, UIM = 0.54.

Fig. 7. Baseline RMS results. Mean normalized RMS error are SDIM = 1.19, PRSW = 3.26, UIM = 2.3.

3) An evaluation of the relationship between amount of
acoustic adaptation data and inversion performance.

IV. RESULTS AND ANALYSIS

A. Baseline Adaption Result

Fig. 6 shows the inversion performance for all 20 speakers as
measured by correlation of the estimated and actual articulatory
trajectories. From the correlation results we see that 13 out of
20 speakers support the initial hypothesis (SDIM > PRSW >
UIM); however, seven speakers have results that show a different
pattern (SDIM > UIM > PRSW), with the PRSW method giving
relatively poor results. Looking closely at the correlation, the
inversion performance of the speaker-dependent models varies
widely across the 20 speakers (from highest 0.72 to lowest
0.52). The universal model has a relatively consistent inversion
performance for every individual speaker (around 0.54).

Fig. 7 shows the average normalized RMS error for each
speaker, and Fig. 8 illustrates an example of these reconstruc-

tion results, showing the true trajectory (blue line) along with
inversion output from SDIM (red line), UIM (black line), and the
PRSW model (green line) for the articulatory feature VT8. Al-
though PRSW matches the overall trajectory shape well, there is
an offset and a change in dynamic range that causes a larger RMS
error, which illustrates why normalized RMS error is not con-
sidered the best measure for evaluating kinematic-independent
inversion systems. This differential is caused by physical vari-
ation in subjects that cannot be estimated or compensated for
without kinematic data, even though the trajectory shape can
be accurately estimated. In fact, the offset and dynamic range
adjustment act as a beneficial normalization in many applica-
tions that acts to reduce speaker variance while still accurately
tracking articulatory patterns.

B. Variation Across Speakers

There is a large variation in the baseline speaker-dependent
inversion performance across the 20 speakers. This varia-
tion can be further investigated by analyzing the articulatory
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Fig. 8. Example of reconstructed articulatory features from the three different models.

Fig. 9. Scatter plot of articulatory model variance versus correlation of
speaker-dependent models.

feature model parameters for each speaker. The mapping from
acoustic-to-articulatory space is through state alignment, so the
more consistent the articulatory feature values are for identi-
cal phoneme sequences, the better the expected performance of
the inversion system. The Gaussian variance in the articulatory
HMM states is a good measure of this consistency.

The scatter plot in Fig. 9 shows a linear relationship between
the consistency of articulatory features and the inversion perfor-
mance as measured by correlation. In this figure, each red dot
represents an individual speaker. A higher variance indicates
that the speaker has a less consistent articulatory pattern, which
is correlated with the inversion model having less accurate es-
timates of articulatory feature patterns. Speakers with lower
variance articulatory models have better performing inversion
models.

These results highlight a concern with the proposed PRSW
method, which is that not all reference speakers give high-
quality speaker-dependent acoustic-to-articulatory inversion
models. This may be a result of less consistent articulatory or
pronunciation patterns or other similar factors, but suggest the
idea that a reduced set of reference speakers that includes only
those with good individual inversion performance would lead to
a more robust and generalizable kinematic-independent system.
In principal, a large set of speakers with parallel acoustic
and kinematic data, across a diversity of speaking and dialect

patterns, could be used to create an initial set of reference
models. After this, a subset of speakers, still representing a
diversity of speaking patterns but having high-quality inversion
performance, could be used to create the PRSW reference set
for new speakers.

In the next section, two different reference speaker selec-
tion strategies will be explored: one based on limiting the to-
tal number of reference speakers based on acoustic similarity
(weight thresholding) and the other based on globally limiting
the reference speaker set based on speaker-dependent inver-
sion performance (M-best pre-selection). Both of the adaptation
approaches use each speaker’s full set of data if enrolled as
reference speakers.

C. Selection of Reference Speakers

Normally, the quality of an adapted acoustic model is depen-
dent on the selection of reference speakers. The influence of
selection approaches has been investigated in previous studies
for acoustic models [25], [26] but not for articulatory models. In
this section, two different reference selection strategies for the
proposed acoustic-to-articulatory inversion system have been
implemented and analyzed.

1) Weight Thresholding: In the proposed weight threshold-
ing approach for reference speaker selection, the full set of
reference speakers is used with the PRSW approach to iden-
tify maximum likelihood speaker weights, and then the speaker
weights are thresholded against a fixed value α. Only speakers
exceeding the minimum weight level are included for building
the target speaker inversion model, with weights re-normalized
to sum to unity. Since RSW weights can be regarded as a sim-
ilarity measurement, this speaker selection can be viewed as
a nearest neighbor implementation requiring a minimum simi-
larity for inclusion. Note that this method does not eliminate
speakers based on their individual speaker-dependent inver-
sion performance, but rather based on minimum target speaker
similarity.

In order to investigate the effect of different thresholds,
the threshold α is incremented in small steps (0.01), with a
maximum value of 0.09, the maximum threshold for this data
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Fig. 10. Correlation as a function of threshold, for PRSW using weight thresholding selection.

set that ensures there is at least one speaker in the reference
speaker set.

Fig. 10 shows the plot of threshold as average performance
across 20 speakers. Results show that the average performance
for this approach is always higher than the baseline PRSW
results. With the initial threshold of 0.01 the performance is
close to that of the baseline PRSW. As the threshold increases,
the performance continues to improve until a threshold of 0.05,
and then decreases slowly. The high performance suggests that
reducing the number of speaker models being combined to cre-
ate the new test speaker has a positive overall impact on articu-
latory consistency. Although in this case a threshold of 0.05 is
the best, the optimal weight threshold would vary as a function
of both the number of references speakers in a particular data
set and their relative similarity to the target speaker. Once a
specific reference speaker set is established, the optimal weight
threshold can be determined on a set of development data and
should then give consistent results for new speakers.

2) M-Best Global Pre-Selection: In the proposed global
pre-selection approach, the M speakers with the best speaker-
dependent inversion performance are selected globally as
reference speakers, with the other speakers eliminated from
consideration. Because of the observed large variance across
speakers in terms of the quality of speaker-dependent results,
speaker-dependent inversion performance can be regarded as a
measure of model consistency. The hypothesis is that the more
consistent the reference speakers, the higher the upper limit on
inversion results of the adapted model.

In this global pre-selection method, the core reference
speaker set is the same for each test speaker, including exactly
the M-best reference speakers according to speaker-dependent
model correlation performance. When the test speaker is in the
M best list, the next best speaker is included instead, so that

the reference set is maintained at M consistently across all 20
speakers. This means that the reference speaker sets are not
fully identical, but always have at least 19 speakers in common.
In this experiment, M is increased from 1 to 19.

Fig. 11 shows the plot of the average performance as a func-
tion of M across 20 speakers. With the weight thresholding
method, the overall performance dominates that of the baseline
PRSW regardless of reference speaker set. In the initial case
M = 1, a single reference speaker acts as a surrogate model
for the target speaker. As the number of reference speakers in-
creases, the average performance increases until reaching a peak
at M = 7, then decreases significantly. For this dataset, M = 7
results in speakers having an SDIM correlation greater than 0.67
being selected as reference speakers. As with the weight thresh-
olding approach, the optimal parameter M is also a function of
the original number of speakers, and more importantly of the
quality of those speaker models as measured by the speaker-
dependent inversion performance.

Table II shows full results for all 20 speakers for SDIM, UIM,
baseline, and both thresholding approaches, over this same test
dataset. Although there is a large variation in performance across
individual speakers, indicating the complexity of acoustic-to-
articulatory inversion in general, results show that reducing the
reference speaker set improves performance in all 20 cases,
and results in a final PRSW system that outperforms the UIM
system for every test speaker and approaches the accuracy of
the speaker-dependent systems.

Qualitative examination of the individual reference speak-
ers selected through the acoustic and global selection methods
reveals similar speaker selection results. The accuracy of the
adapted model depends both on the similarity in the acoustic
space and on the consistency of reference speakers’ articulatory
patterns, but the latter is especially important. Together these
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Fig. 11. Correlation as a function of the number of reference speakers, for PRSW M-best global pre-selection.

TABLE II
RESULTS FOR ALL 20 SPEAKERS ACROSS ALL METHODS

Speaker UIM PRSW, all PRSW, weight α =
0.05 (M)

PRSW, global
(global, M = 7)

SDIM

1 0.50 0.51 0.55 (8) 0.56 0.53
2 0.54 0.58 0.62 (6) 0.66 0.67
3 0.56 0.56 0.63 (6) 0.62 0.72
4 0.57 0.62 0.63 (6) 0.64 0.69
5 0.51 0.53 0.61 (6) 0.62 0.59
6 0.62 0.56 0.67 (7) 0.68 0.72
7 0.57 0.56 0.63 (7) 0.64 0.65
8 0.57 0.57 0.61 (5) 0.66 0.65
9 0.57 0.55 0.63 (6) 0.64 0.68
10 0.55 0.54 0.62 (8) 0.63 0.67
11 0.55 0.58 0.63 (6) 0.65 0.72
12 0.57 0.63 0.66 (6) 0.66 0.69
13 0.50 0.54 0.61 (5) 0.61 0.61
14 0.48 0.48 0.54 (8) 0.57 0.55
15 0.53 0.53 0.53 (7) 0.55 0.55
16 0.48 0.48 0.51 (7) 0.54 0.54
17 0.48 0.48 0.51 (7) 0.53 0.53
18 0.54 0.54 0.60 (8) 0.62 0.64
19 0.54 0.61 0.62 (7) 0.62 0.64
20 0.60 0.60 0.67 (7) 0.65 0.65
Average 0.54 0.55 0.60 0.62 0.63

The PRSW inversion model approaches of the accuracy the speaker-dependent (SDIM)
inversion models, even though the SDIM model is based on kinematic data of the target
speaker, while the PRSW method uses only acoustic adaptation data.

two affect the performance of the adapted model. The results
shown here strongly indicate that one of the biggest factors in
high quality kinematic-independent acoustic-to-articulatory in-
version is a diverse set of reference speakers with consistent
articulatory patterns.

It should be noted that the best choice of reference speakers
is dependent on the application domain and on the reference

speakers themselves, including both the consistency of their
acoustic-articulatory patterns and their diversity in terms of rep-
resenting a broad set of speakers for adaption. This emphasizes
the need for a strong set of reference speakers so that it is possi-
ble to obtain a good base set of references from which to adapt
new models.

D. Performance as a Function of the Quantity of Acoustic
Adaptation Data

The PRSW experiments in the previous sections use the full
set data from the target speaker to do adaptation, including 198
utterances representing approximately 28 minutes of speaking
time. Normally RSW performs effectively with limited adapta-
tion data. One question is whether PRSW still has this property
under our proposed inversion framework, and what quantity of
adaptation data is sufficient to obtain a good adapted articu-
latory model. In this section, the impact of the adaption data
quantity on inversion performance is investigated. In the fol-
lowing experiments, the utterance set has been divided into 10
approximately equally sized subsets, each of which is roughly
20 utterances and 3 minutes of speaking time.

Fig. 12 shows the inversion performance versus the quantity
of adaptation data for one speaker. The baseline PRSW method
converges at about 70% of the adaptation data, while the reduced
speaker-set PRSW methods converge at about 30–40% of the
data, or 60–80 utterances. Although Fig. 12 shows the inversion
performance for one specific speaker, this experiment has also
been implemented for every speaker individually. Results show
these same characteristics with slightly different convergence
points for each speaker, ranging from 20 to 80 utterances (3 to
12 minutes of adaptation data). Although this is not as small
an adaptation set as some rapid adaptation techniques, it would
allow for implementation in the context of applications like
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Fig. 12. Inversion performance versus total quantity of adaptation data for a single speaker. (Each adaptation subset represents approximately 3 additional
minutes of data.)

pronunciation training with a relatively small amount of acoustic
training materials.

V. CONCLUSION

This paper has presented an acoustic-to-articulatory inversion
system that requires no kinematic data for the target speaker
and a relatively small amount of acoustic adaptation data. The
proposed PRSW framework adapts articulatory models using
weights computed in the acoustic space. Initial baseline experi-
ments showed variable performance as measured by correlation
between estimated and actual trajectories, with indications that
this variability is related to the selection of reference speak-
ers. Based on this idea, two speaker selection methods have
been considered, one based on thresholding the number of ref-
erence speakers based on acoustic model similarity to the tar-
get speaker, and another that is based on globally reducing the
reference speaker set using speaker-dependent inversion perfor-
mance. Experimental results show that both of these selection
methods work better than the baseline system. The final system
using a globally reduced speaker set resulted in an average corre-
lation score of 0.62, nearly as high as the speaker-dependent re-
sult of 0.63 built using kinematic training data, and significantly
higher than the universal model result of 0.54. This indicates
that the proposed PRSW is able to adapt a good articulatory
model for the target speaker without any kinematic data as long
as the reference speaker set is carefully selected for acoustic and
articulatory consistency. The comparable performance between
the kinematic-independent and original speaker-dependent sys-
tem supports the hypothesis that acoustic similarity can be used
as a proxy for articulatory similarity in model building. Given

a strong reference speaker set, the proposed PRSW adaptation
is an effective approach for acoustic-to-articulatory inversion in
the absence of kinematic training data.
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