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ABSTRACT 

SPEAKER INDEPENDENT ACOUSTIC-TO-ARTICULATORY 

INVERSION 

 

Acoustic-to-articulatory inversion, the determination of articulatory parameters 

from acoustic signals, is a difficult but important problem for many speech processing 

applications, such as automatic speech recognition (ASR) and computer aided 

pronunciation training (CAPT). In recent years, several approaches have been 

successfully implemented for speaker dependent models with parallel acoustic and 

kinematic training data. However, in many practical applications inversion is needed for 

new speakers for whom no articulatory data is available. In order to address this problem, 

this dissertation introduces a novel speaker adaptation approach called Parallel Reference 

Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov 

Models (HMM). This approach uses a robust normalized articulatory space and palate 

referenced articulatory features combined with speaker-weighted adaptation to form an 

inversion mapping for new speakers that can accurately estimate articulatory trajectories. 

The proposed PRSW method is evaluated on the newly collected Marquette 

electromagnetic articulography – Mandarin Accented English (EMA-MAE) corpus using 

20 native English speakers. Cross-speaker inversion results show that given a good 

selection of reference speakers with consistent acoustic and articulatory patterns, the 

PRSW approach gives good speaker independent inversion performance even without 

kinematic training data.  
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1 Introduction 

1.1 Problem description 

Human speech is generated through the movement of a complex set of 

articulators, including the tongue, jaw and lips, controlled together through the speech 

production process. Our brain has a well-developed speech region to convert basic units 

(phonemes) to nerve impulses, which control muscular contractions. These contractions 

generate a series of articulatory movements to shape the acoustic waveform. This 

relationship between articulatory movements and acoustics is learned through experience, 

such as the process of infants imitating speech or foreign language learners learning new 

pronunciations. This learning process includes auditory processing, acoustic and 

linguistic perception and articulatory motor control. 

Reversing the process to estimate articulatory movements from a speech signal, 

known as acoustic-to-articulatory inversion, can help us understand speech production 

and has application to many important speech technologies. For example, articulatory 

information can be integrated with acoustic features to improve the performance of 

automatic speech recognition system (Mitra, Nam, Espy-Wilson, Saltzman, & Goldstein, 

2010; Sun & Deng, 2002). Articulatory information can be used to improve the quality of 

the synthesized voice in speech synthesis (Ling, Richmond, Yamagishi, & Wang, 2009) 

and to automate the facial animation of virtual characters in films and video-games 

(Hofer & Richmond, 2010). Visualizing the position of the articulators from acoustic 

signal would be extremely useful in speech therapy systems and in Computer Aided 
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Language Learning (CALL) and Computer Aided Pronunciation Training (CAPT) 

systems. 

One motivating aspect of this work is the application of acoustic-to-articulatory 

inversion to CALL and CAPT systems, where a reliable inverse mapping to estimate 

articulatory movements would be able to more accurately analyze pronunciation errors 

and to assist in providing detailed corrective feedback. Current CALL and CAPT systems 

are limited in providing such detailed feedback, partially because this inverse problem is 

difficult and not yet well solved.  

1.2 Motivation 

The main goal of this dissertation is the creation of robust and accurate models for 

speaker independent acoustic-to-articulatory inversion. While there has been significant 

prior work in articulator-to-acoustic modeling, current methods, described more fully in 

Section 2.5, must be trained on simultaneous acoustic and articulatory kinematic data for 

each speaker. However, in many applications, it is not feasible to collect such data for 

each user. In these cases, an efficient acoustic-to-articulatory inversion procedure needs 

to be developed which is robust to the lack of kinematic training data. This is important 

in applications such as CALL and CAPT where models learned without kinematic data 

are essential.  

The complexities of inter-speaker differences in both articulatory and acoustic 

spaces result in the need to develop more sophisticated methods for normalization of 

multiple speakers’ articulatory measurements to represent a single generalized 

articulatory space, for creation of speaker dependent acoustic-articulatory models, and 
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subsequently for adapting these models to provide accurate acoustic-articulatory 

mappings for new speakers for whom there is acoustic but no kinematic data. The work 

described here addresses the above research problems with the goal of creating a speaker 

independent articulatory-acoustic inversion algorithm.  

1.3 Objectives and Contributions 

Current approaches for estimating articulatory parameters are speaker-dependent, 

requiring matched kinematic and acoustic data for the specific target speaker. Developing 

speaker independent methods for speech inversion is essential to furthering research in 

this area. The objective of this dissertation is to extend current methods for acoustic-

articulatory inversion to work on new speakers with no kinematic data and limited 

acoustic data. Successful achievement of this objective requires advances in techniques 

for articulator space normalization and the application of current methods for speaker 

adaption to the problem of acoustic-articulatory inversion. This work has resulted in 

several distinct contributions: 

1. The Marquette University Electromagnetic Articulography Mandarin 

Accented English (EMA-MAE) corpus. The first contribution is the collection 

and dissemination of a multi-speaker EMA data set. This data set is one of the 

largest of its kind, providing simultaneous kinematic and acoustic data from 40 

gender and dialect balanced speakers. 

2. A new method for articulatory space calibration. The second contribution is a 

calibration approach for transformation of kinematic data into an appropriate and 

stable articulatory coordinate space. Results show that this calibration method 
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accurately and consistently transforms sensor data into an articulatory space in 

which sensor movements and orientations have a consistent representation. This 

representation enables investigation of the relationship between articulator 

kinematics and acoustics across speakers within a consistent articulatory space. 

3. Palate referenced articulatory features for vocal tract modeling: The third 

contribution is the introduction of a set of articulator feature variables that are 

palate referenced and normalized with respect to the articulatory space. The 

selection of effective articulatory features is an important component of acoustic-

to-articulator inversion and articulatory synthesis. Although it is common to use 

direct articulatory sensor measurements as feature variables, this approach fails to 

incorporate important physiological information such as palate height and shape 

and thus is not as representative of vocal tract cross section as desired. The 

features introduced here include normalized horizontal positions and normalized 

palatal height of two midsagittal and one lateral tongue sensor, as well as 

normalized lip separation and lip protrusion. The quality of the feature 

representation is evaluated qualitatively by comparing the variances and vowel 

separation in the working space and quantitatively through measurement of 

acoustic-to-articulator inversion error. Results indicate that the palate-referenced 

features have reduced variance and increased separation between vowels spaces 

and substantially lower inversion error than direct sensor measures. 

4. A novel speaker independent acoustic-to-articulatory inversion system works 

on new speakers for whom there is no kinematic data: The fourth contribution 

is the Parallel Reference Speaker Weighting (PRSW) Hidden Markov Model 
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(HMM)-inversion system, which can adapt to new speakers without any 

kinematic data. By adapting in acoustic space, an adapted parallel articulatory 

model can be estimated to perform the inversion. Experimental results show that 

the PRSW approach offers good speaker independent inversion performance 

without kinematic training data, but requires a carefully chosen set of reference 

speakers with a consistent within speaker acoustic-to-articulatory mapping. 

1.4 Dissertation outline 

Chapter 2 starts with general background related to this work. Articulatory data, 

speech and articulator modeling, current articulatory normalization, speaker adaptation 

and previous work in the area of speech inversion have been discussed.  

Chapter 3 provides a detailed description of the Marquette EMA-MAE dataset 

and introduces the first three contributions, including new approaches for bite-plate space 

calibration and palate referenced articulatory feature extraction. 

Chapter 4 introduces the baseline Hidden Markov inversion model and tuning of 

model parameters to achieve the highest inversion accuracy. This baseline inversion 

system is used as an evaluation platform for the proposed articulatory features. 

Chapter 5 describes the proposed PRSW method, presents an evaluation 

framework, and presents results of the final system on new speakers trained without 

kinematic data. 

Chapter 6 gives conclusions and possibilities for future work  
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2 Background 

2.1 Introduction 

Humans produce audible speech by moving their articulators, particularly the 

tongue, lips and jaw, to modify the glottal source energy. Speech inversion aims to invert 

this process and determine the underlying articulatory space configuration from acoustic 

speech. The recovery of the articulatory movement from the acoustic signal has attracted 

the interest of researchers because a successful solution to this inversion problem would 

have many speech applications including automatic speech recognition, speech synthesis 

and pronunciation training. In order to solve the speech inversion problem, it is important 

to understand speech and articulatory data representation and basic speech modeling 

methods. This chapter provides a general technical background for the speech inversion 

research area, including articulatory data acquisition and articulatory space 

representation, speech acoustic modeling, speaker adaptation and previous work on 

acoustic-to-articulatory inversion.  

2.2 Articulatory data acquisition and space representation 

2.2.1 Articulatory data acquisition 

There are several approaches to collecting articulatory kinematic data, including 

X-ray cinematography, cine MRI, ultrasound and electromagnetic articulography (EMA). 

Each has advantages and disadvantages related to factors such as spatial and temporal 

resolution, accuracy, capacity and accessibility. X-ray cinematography uses x-ray film 

photography to provide accurate imaging of the articulators; however, there are concerns 
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about radiation to the subject’s head (Houde, 1967; Munhall, Vatikiotis-Bateson, & 

Tohkura, 1998). Magnetic Resonance Imaging (MRI) uses a magnetic field and pulses of 

radio wave energy to take images of structures inside the body. It can provide dynamic 

3D measurement of the vocal tract but it is cumbersome and expensive (Masaki et al., 

1999; Narayanan, Nayak, Lee, Sethy, & Byrd, 2004). In contrast, the ultrasound 

technique, which uses high-frequency sound waves to view soft tissues, is able to capture 

the surface of the tongue (Kaburagi & Honda, 1994; Stone, Sonies, Shawker, Weiss, & 

Nadel, 1983) but noise, echo artifacts and refractions may affect the results. 

Electromagnetic articulography (EMA) sensing has become the most widely used 

articulography technique for the collection of parallel acoustic and articulatory data 

(Perkell & Cohen, 1992). This technique uses electromagnetic transducer coils glued to 

the articulators to record measurement of their position. Compared to the other 

techniques, EMA is low cost and relatively simple to use.  

With the development of these data collection techniques, several parallel 

acoustic-to-articulatory datasets have become available to the public research community 

These include the X-ray Micro-beam Speech Production database (Westbury, 1994a), the 

MOCHA TIMIT database (Richmond, Hoole, & King, 2011; Wrench & William, 2000), 

the EUR-ACCOR multi-language articulatory database (Wrench, 1993) and the recent 

Edinburgh speech production facility DoubleTalk corpus (Scobbie et al., 2013). However 

these database are limited in the number of speakers, which makes investigation of 

speaker independent acoustic-to-articulatory inversion, a central component of this work, 

infeasible.  
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To address this limitation, it was necessary to collect a new multiple speaker 

dataset. The EMA-MAE corpus, a new bilingual multi-speaker corpus of parallel acoustic 

and EMA kinematic data have been collected and use it in this work to develop and test a 

new speaker independent acoustic-to-articulatory inversion method. A detailed 

description of this corpus will be given in Chapter 3.  

2.2.2 Articulatory space representation 

Representation of articulatory motion is very important in acoustic-to-articulatory 

inversion. Currently, most approaches have suggested that linguistically based features 

which relate directly to the human articulatory process, such as tongue position, lip 

rounding, place of articulation, and manner of articulation, can be beneficial in capturing 

speech characteristics (Kirchhoff, 1999; Metze & Waibel, 2002; Tang, Seneff, & Zue, 

2003). These articulatory features are abstract descriptions of vocal tract properties and 

articulator motion during speech production; therefore they can complement or even 

replace acoustic-based features in speech processing. Recently, there has been renewed 

interest in applying articulator information as alternative and or supplementary features 

for speech processing tasks (Erler & Deng, 1993; Frankel & King, 2001; Leung & Siu, 

2004). While there is general agreement on the articulator properties of base phonemic 

units, there are many ways to represent or encode these properties such that they can be 

extracted and modeled with no standard representation. There are a number of different 

articulatory models that have been proposed (Birkholz, Jackel, & Kroger, 2006; Coker, 

1976; Mermelstein, 1973). The Maeda model (Maeda, 1990) shown in Figure 2.1 is a 

common model which represents the articulatory  space and motion with seven key 
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parameters that relate to the cross-sectional area of the vocal tract, originally constructed 

by applying a factor analysis method on vocal tract contour data.  

Figure 2.1: Maeda’s articulatory model: P1 jaw height, P2 tongue dorsum length, 

P3 tongue dorsum shape, P4 tongue apex position, P5 lip separation, P6 lip 

protrusion, P7 larynx height 

These established models typically represent a two-dimensional midsagittal vocal 

tract, and do not include modeling of more complex features such as lip rounding or 

tongue curvature. Three-dimensional articulatory modeling, specifically including 3D 

tongue reconstruction, lip position and facial shape, has seen noteworthy advances (Badin 

et al., 2002; Birkholz et al., 2006; Dang & Honda, 2004; Story, 2005). Detailed 3D 

knowledge of the vocal tract shape is important for more realistic speech production 

studies. However, these efforts all require the combination of multiple medical imaging 

techniques to provide complementary spatial and temporal resolution of variation in the 

vocal tract.  Moreover, the high-dimensional nature of three-dimensional articulatory 

models substantially complicates speaker normalization and acoustic-to-articulatory 

inversion. Consequently, three-dimensional vocal tract modeling is largely constrained to 

speaker-specific models and has not yet become accessible for multi-speaker research. 
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In this work a Cartesian coordinate system is used for the articulatory space, 

referenced to each individual subject’s physiology such that the midsaggital plane and 

maxillary occlusal plane form the axes of the articulatory space, as described in more 

detail in Section 3.3. Within this articulatory space, each subject has an unique dynamic 

range of motion, creating what is referred to as their “articulatory working space”, 

“working space”, or “vowel space”, since much of this dynamic range, especially of the 

tongue, is a function of vowel-related motion. 

2.2.3 Articulatory space normalization 

In order to make meaningful comparisons across speakers in the articulatory 

space or to develop robust speaker independent acoustic-to-articulatory inversion 

systems, normalization in the articulatory space across speakers is necessary. Both 

articulatory and acoustic structure vary substantially across speakers due to physiological 

differences as well as learned language and dialectal pronunciation differences. 

Understanding the source of speaker variability is important when designing a procedure 

that recovers articulatory movement from speech acoustics.  

Hashi proposed a geometric-based normalization method for articulatory 

parameters. In his paper, the palatal height is used as a systematic source of variation and 

the articulatory data is scaled to a common range. Specifically the tongue and lip 

positions are expressed relative to the normalized palate. Sadao has also implemented 

palate normalization, performed by rotating the palate positions for the position of upper 

incisor. Rotation angle is determined by minimizing the error of palate positions among 

different speakers (Hiroya & Mochida, 2005). McGowan and Cushing proposed vocal 
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tract normalization for articulatory inversion using analysis-by-synthesis. In their work 

the normalization is implemented by adjusting the articulatory model in order to make the 

acoustic signal and articulatory model match as closely as possible over pairs of 

corresponding human and model midsagittal shapes (McGowan & Cushing, 1999). Felps 

and Osuna (Felps & Osuna, 2010) describe and compare two articulatory normalization 

methods across speakers, the classical and extended Procrustes transformation, which 

allows for global translation, rotation and scaling of articulator positions. Results indicate 

that the extended Procrustes with an analysis-by-synthesis loop can find an optimized 

articulatory normalization space with consistent acoustic similarity.  

The ideal normalization method is largely dependent on the corpus and target 

application, so there is no consensus on which is the best normalization method. For 

example, Bechman et al. straighten the vocal tract wall to transform the coordinates for 

MRI data (Beckman & Jung, 1995). Hashi et al normalize the vowel posture in the X-ray 

Microbeam database (Hashi, M. Westbury, J. R. & Honda, 1998). Wei et al use thin-plate 

splines to reduce the morphological differences of vocal tracts among different subjects 

with EMA data (Wei, 2008). All of these normalization methods work for a specific 

dataset but are not necessarily broadly applicable to all kinematic measures.  

In this dissertation, a geometric based articulatory space calibration and 

normalization is used for the Marquette MAE-EMA corpus and the speaker independent 

acoustic-to-articulatory task, as described in detail in Section 3.3. From this articulatory 

space, a set of articulatory feature variables are computed, which incorporate range of 

motion and palate information to further normalize the final representation of articulatory 

motion across speakers, as described in Section 3.4. 
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2.3 Speech acoustic modeling 

2.3.1 Acoustic features 

The previous section presented the representation of articulatory features varies 

across different tasks. In contrast, the typical representation of speech is relatively 

consistent. Normally most inversion systems use standard Cepstrum analysis (Davis & 

Mermelstein, 1980) to generate a set of features, called Mel Frequency Cepstral 

Coefficients (MFCCs), which are a robust representation of vocal tract configuration 

information regardless the source of excitation. This feature is also the most commonly 

used feature in automatic speech recognition systems. Some inversion systems use Linear 

Predictive Coding (Lawrence & Schafer, 1978) coefficients and Perceptual Linear 

Prediction (Hermansky, 1990), but these representations have   been generally replaced by 

MFCCs. This work uses MFCCs and MFCC dynamics (velocity and acceleration) as 

acoustic features. 

2.3.2 Statistical acoustic modeling 

Acoustic modeling of speech is the process of capturing the relationship between 

sound units and acoustic feature vectors. The acoustic input consists of a sequence of 

feature vector observations 𝑂. Each index represents a discrete time interval, and 

successive 𝑜𝑖 indicate temporally consecutive frames of the input:  

𝑂 = [𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑇]. (2.1) 

Similarly, we can represent the sequence of sound units as 
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𝑊 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛]. (2.2) 

In the context of automatic speech recognition, the goal is to find the most likely sound 

unit sequence given the acoustic input 𝑂: 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃(𝑊|𝑂)). (2.3) 

By using Bayes’ rule we can break the above equation down as 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(
𝑃(𝑂|𝑊)𝑃(𝑊)

𝑃(𝑂)
), (2.4) 

Here 𝑃(𝑊) is the prior probability of the unit sequence, computed from a language 

model. 𝑃(𝑂|𝑊) is the observation likelihood from the acoustic model. 𝑃(𝑂), the 

probability of the acoustic observation sequence, which for maximum likelihood 

estimation of 𝑊, is not needed: 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 (
𝑃(𝑂|𝑊)𝑃(𝑊)

𝑃(𝑂)
) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃(𝑂|𝑊)𝑃(𝑊)). (2.5) 

Since the true alignment between 𝑊and 𝑂 is unknown even in labeled training 

data, the underlying state sequence is ‘hidden’, and an appropriate model choice is a 

discrete state statistical state machine, such as Hidden Markov Models (HMM). An 

HMM consists of two stochastic processes, a hidden Markov chain and an observable 

process. Figure 2.2 shows a left-to-right 6-state HMM structure for acoustic modeling.  

The parameters needed to define the HMM are: 

 States: a set of states (𝑆1 − 𝑆𝑛 ) 
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 Transition probabilities: a set of probabilities 𝐴 = [𝑎11𝑎12 … 𝑎𝑛1 … 𝑎𝑛𝑛]. 

Each 𝑎𝑖𝑗 represents the probability of transitioning from state 𝑖 to state 𝑗.  

 Observation likelihoods: a set of observation likelihoods 𝐵 =  𝑏𝑖(𝑜𝑡) , each 

represents the probability of an observation 𝑜𝑡 being generated from a state 𝑖 

 Initial distribution: an initial probability distribution over the states, such 

that 𝜋𝑖 is the probability that the HMM will start in state 𝑖.  

S1 S2 S3 S4 S5 S6

a24

a23 a34 a45 a56

a22 a33 a44 a55

a35

b2(O1)

O2 O3 O4 O5 O6 O7 O8O1

b2(O2) b3(O3) b3(O4) b3(O5) b4(O6) b5(O7) b5(O8)

Observation 
Sequence

Observation 
Likelihoods

Gaussian Mixture Model

A left-to-right 6 
states HMM

 

Figure 2.2 Left-to-right 6 state HMM structure 

In the above HMM example, there are two special states called non-emitting 

states used as the start (S1) and end state (S6), which allow for connecting multiple 
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HMMs together in a longer sequence. At each time interval 𝑡 within 𝑖 state, an 

observation feature vector 𝑂 is generated by the probability density function 𝑏𝑖(𝑜𝑡). All 

states generate observations except the two non-emitting states. The observation 

distribution 𝑏𝑖(𝑜𝑡) is typically represented by Gaussian mixture models (GMMs): 

𝑏𝑖(𝑜𝑡) = ∑ 𝑐𝑖𝑚𝑁(𝑜𝑡;  𝜇𝑖𝑚, ∑𝑖𝑚)
𝑀𝑖
𝑚=1 , (2.6) 

where 𝑀𝑖 is the number of mixture components for state 𝑖, and 𝑐𝑖𝑚 is the weight of 

component 𝑚 of state 𝑖. 𝑁(𝑜𝑡;  𝜇𝑖𝑚, ∑𝑖𝑚) is the 𝑚 th mixture normal  density function of 

state 𝑖: 

𝑁(𝑜𝑡;  𝜇𝑖𝑚, ∑𝑖𝑚) ∝  |∑𝑖𝑚|
1

2exp (−
1

2
(𝑜𝑡 − 𝜇𝑖𝑚)𝑇∑𝑖𝑚

−1(𝑜𝑡 − 𝜇𝑖𝑚)) (2.7) 

HMMs have been the dominant acoustic model for speech recognition for nearly 

30 years (Jelinek, 1999; Rabiner, 1989; Rabiner & Juang, 1993). The basic inversion 

framework in this dissertation is based on HMM acoustic modeling. 

There have been several other models proposed for acoustic modeling in recent 

studies, such as conditional random fields, artificial neural networks, hidden/linear 

dynamic models and others (Bahl & Jelinek, 1975; Jelinek, 1969; Jelinek, Bahl, & 

Mercer, 1975; Jelinek, 1976). These models have advantages for specific applications, 

but HMMs remain the most widely used approach.  

2.4 Speaker adaptation  

The main goal of this dissertation is find a robust speaker independent inversion 

mapping to estimate a new speaker’s articulatory trajectory without any kinematic 
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training data. To do this, existing model based speaker adaption methods used for speech 

recognition can be utilized. The idea of adaptation is to create a new acoustic model for 

the target speaker from existing trained reference speaker models, with a minimal amount 

of training data for the new speaker, called the adaptation data. Normal adaptation 

algorithms include Bayesian-based maximum a posteriori (MAP) (Gauvain & Lee, 

1994), the transformation-based maximum likelihood linear regression (MLLR) 

(Leggetter & Woodland, 1995), Reference Speaker Weighting (RSW) (Hazon & Glass, 

1997; Hazon, 2000) and Eigenvoice (Kuhn, 1998; Kuhn, Junqua, Nguyen, & Niedzielski, 

2000).  

By using acoustic adaption techniques, we intend to identify differences in 

acoustic patterns and create adapted acoustic and kinematic models in parallel, and form 

a new inversion mapping that can estimate articulatory trajectory on new speakers with 

no kinematic data. The MAP and MLLR methods are not suitable for adapting 

articulatory models directly from acoustic models because there is no kinematic data 

available for the target speaker to perform articulatory adaptation. In the context of 

acoustic-to-articulatory inversion, the idea behind RSW is more appropriate because this 

assumes that the model parameters of a new speaker can be constructed from a weighted 

combination of a set of individual reference speakers’ models. This combination can be 

extended to the articulatory space to develop a speaker independent inverse mapping. 

Since the proposed new method is based on the RSW concept, we will elaborate the 

technical details of RSW in more detail in this section.  
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2.4.1 Reference Speaker Weighting (RSW) 

Rapid speaker adaptation approach implements adaptation with very small 

amounts of adaption data, typically 5-10 seconds of speech (Kubala, Schwartz, & Barry, 

1989). Reference speaker weighting is based on model combination and works 

effectively even when the amount of adaptation data is quite small. RSW requires 

speaker-dependent models as a starting point for estimating the parameters of a new 

speaker.  

HMM   
 λ1

Speaker1

HMM   
 λ2

Speaker2

HMM   
 λ(k-1)

Speaker(K-1)

HMM   
 λk

SpeakerK

 ...

HMM 
λ = w1λ1    +   w2λ2  + …  + wk-1λk-1  +  wkλk

New speaker

w1 w2 wk-1 wk

 

Figure 2.3 Reference speaker weighting 

The basic idea of this method is shown in Figure 2.3 and 2.4. A new speaker’s 

model can be estimated from a weighted combination of reference speakers. Each 

reference speaker is represented by a supervector, which is constructed by concatenating 

the mean vectors of all acoustic model parameters.  
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Figure 2.4 Supervector representation of reference speakers 

RSW estimates the model of a new speaker from the span of the reference speaker 

models. Figure 2.5 shows the implementation procedures of RSW in the acoustic space. 

In the offline steps, speaker dependent models are trained using HMMs. Supervectors are 

used to represent the HMM model parameters. Once the reference speakers’ models are 

constructed, the online steps estimate weights from new speaker’s adaptation data by 

using the expectation maximization algorithm to determine maximum likelihood weight 

estimates. The new speaker’s model can then be constructed from a linear combination of 

reference speakers’ model using these weights. 
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Figure 2.5 RSW implementation diagram 

The weights are estimated by comparing the acoustic signal from a new speaker S 

against a set of K reference speakers. Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝐾} be the set of reference 

speaker supervectors, defined as the concatenation of the Gaussian means from all state 

models in sequence. Then the RSW estimate of the new speaker’s supervector is  

𝑠 ≈   𝑠𝑟𝑠𝑤 = ∑ 𝑤𝑘𝑦𝑘
𝐾
𝑘=1 = 𝑌𝑊 (2.8) 

and the mean vector of the 𝑟th Gaussian is 

𝜇𝑟
(𝑟𝑠𝑤)

= ∑ 𝑤𝑘𝑦𝑚𝑟
𝐾
𝑘=1 = 𝑌𝑟𝑊, (2.9) 

where 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝐾]′ is the weight vector and  𝑟 is the number of Gaussian 

mixtures 
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Given the adaptation data 𝑂 = {𝑜𝑡, 𝑡 = 1,… , 𝑇}, the Maximum Likelihood 

estimate of w can be found by maximizing the following 𝑄(𝑤) function: 

𝑄(𝑤) =  −∑ ∑ 𝛾𝑡(𝑟) (𝑜𝑡 − 𝑠𝑟
(𝑟𝑠𝑤)(𝑤))

′

𝐶𝑟
−1𝑇

𝑡=1 (𝑜𝑡 − 𝑠𝑟
(𝑟𝑠𝑤)

(𝑤))𝑅
𝑟=1  (2.10) 

where 𝛾𝑡(𝑟) is the posterior probability of observing 𝑜𝑡 in the 𝑟𝑡ℎ Gaussian, and Cr is the 

covariance matric of the 𝑟th Gaussian. The optimal weight vector may be found by 

setting 

∂Q

∂w
= 2∑ ∑ γt(t)Yr

′Cr
−1(ot − Yrw) = 0T

t=1
R
r=1  . (2.11) 

Thus, the weights 𝑤 may be obtained by solving a system of K linear equations, 

w = [∑ (∑ γt(r)
T
t=1 )Yr

′Cr
−1Yr

R
r=1 ]−1[∑ Yr

′Cr
−1(∑ γt(r)ot

T
t=1 )R

r=1 ] (2.12) 

RSW uses the model parameters of selected speakers to create a composite model 

for new unseen speakers. Another fast speaker adaptation method which is very similar to 

RSW is Eigenvoice. Eigenvoice uses principal component analysis to find a set of 

orthogonal basis vectors to create reference vectors. Both of these methods require the 

model of a new speaker to lie on the span of some reference vectors. The only difference 

is in the ways that the reference vectors are computed. In our acoustic-to-articulatory 

inversion application, RSW is chosen because we have one-to-one matched acoustic and 

articulatory models for individual speakers, which allows us to use the information from 

the acoustic space to adapt the model in articulatory space. 
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2.5 Previous work in speech inversion 

In the previous sections we have reviewed articulator and acoustic modeling, and 

reference speaker weighting adaptation. In this section, previous work on acoustic-to-

articulatory inversion will be discussed. 

Conversion between acoustic and articulatory representations of the vocal tract is 

not an easy task. The transformation of acoustic data into an articulatory feature 

representation is not yet solved (Laprie, 1998), although several methods have been 

proposed. One of the reasons for the difficulty is the “one to many” problem: a given 

articulator state has only one acoustic realization but this acoustic signal can be the 

outcome of more than one articulator state. The non-uniqueness of the mapping between 

acoustics and articulation has been observed by many researchers. Lindblom (Lindblom, 

Lubker, & Gay, 1977) with his colleagues found that subjects were able to generate 

formants within the ranges of variation of normal vowels in spite of physiologically 

unnatural jaw openings from bite-block experiments. The bite-block experiments asked 

subjects to produce Swedish vowels with constrained and unconstrained mandible in Atal 

‘s (Atal, Chang, Mathews, & Tukey, 1978) study of relationships between the shape of 

the vocal tract and its acoustic realization. They observed that the shape of the vocal tract 

can be changed without changing the formant frequencies. Different vocal tract shapes 

can generate near identical values for the first three formant frequencies. For example, 

the English vowel /i/ can be produced with several positions while keeping its formant 

characteristics. From the theoretical side, analyzing Webster’s horn equation, a second-

order linear differential equation used to derive transfer function of a tube under some 

boundary conditions, the area functions 𝐴 (𝑥) and 1/𝐴(𝐿 − 𝑥) (where L is the length of 
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the vocal tract) produce the same acoustic signal (Qin & Carreira-Perpinan, 2007). All of 

these observations and findings support the non-uniqueness nature of acoustic-to-

articulatory inversion.  

Although this non-uniqueness is a legitimate concern, it is typically observed 

within a relatively small range (Qin & Carreira-Perpinan, 2007), as discussed in more 

detail in section 4.2. Speech inversion has the potential to benefit existing speech 

recognition systems, especially in cases with noisy, spontaneous, pathological or 

nonnative speech. In addition to automatic speech recognition, other possible applications 

include speech synthesis and Computer Aided Language Learning systems.  

2.5.1 Codebook method 

The articulatory codebook method estimates articulatory parameters by looking 

up pairs of segmental acoustic and articulatory features from parallel recoded 

articulatory-acoustic data. Hogden (Hogden et al., 1996) divided acoustic vectors into 

256 codes through vector quantization by finding the shortest Euclidean distance between 

the acoustic vectors and articulatory vectors. Kaburagi and Honda (Kaburagi & Honda, 

1998) used the codebook method to synthesize the speech spectrum. In this method each 

articulatory and acoustic data pair stored nine positions and the values of the line spectral 

pair (LSP) parameters throughout the utterance. Using Vector Quantized codebooks is a 

discrete approach and cannot give a high resolution approximation without significantly 

increasing the size of data. Since more sophisticated statistical models have been 

developed, this method has largely been replaced.  
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2.5.2 Neural network method 

Richmond (Richmond, 2002) proposed a successful mapping of the speech signal 

onto EMA data by using Neural Networks, including Multiplayer Perceptrons and 

Mixture Density Networks. He obtained good inversion results with 1.40mm RMS error 

for two MOCHA-TIMIT EMA speakers. The neural network method has shown to be an 

accurate model for inverse mapping if given enough data. An inversion system based on 

neural networks is straightforward to implement, but the choice of network structure, for 

example number of hidden layers and nodes per hidden layer requires significant tuning. 

In addition, phonetic or other temporal constraints cannot be easily incorporated in this 

approach.  

2.5.3 Kalman filter 

King and Wrench presented a dynamical system model using Kalman filter 

trained on EMA data (King & Wrench, 1999). They concluded that the underlying 

physical mechanism of speech production is sufficiently linear as not to require non-

linear dynamical models; however, the acoustic observations do not have a linear 

relationship to the articulator parameters. Dusan and Deng (Dusan & Deng, 2000) 

employed an extended Kalman filter trained on paired acoustic-articulatory data. 

Different phonological models were built by applying an extended Kalman filter on each 

segment of speech repetitively. Articulatory trajectories were estimated by applying the 

extended Kalman smoother using the parameters of the phonological models. The 

reported average RMS error between estimated and actual articulatory trajectories is 

about 2mm. 
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2.5.4 Gaussian mixture model 

Mixture models have also been used. Modeling the joint distribution of acoustic 

and articulatory features with a Gaussian Mixture Model is proposed by Toda (Toda, 

Black, & Tokuda, 2004).  The mapping function from an acoustic feature vector 𝑥𝑡 to an 

articulatory feature vector 𝑦𝑡 in time segment 𝑡 is defined as  

𝑦̂𝑡 = ∑ 𝑝(𝑚𝑖|𝑥𝑖)𝑝(𝑦𝑡|𝑥𝑡, 𝑚𝑖)
𝑀
𝑖=1 , (2.13) 

where 𝑀 is the total number of mixture components,  𝑝(𝑚𝑖|𝑥𝑖) is the component weight 

conditioned on 𝑥𝑖, and 𝑝(𝑦𝑡|𝑥𝑡, 𝑚𝑖) is a conditional Gaussian distribution with full 

covariance matrices. The set of GMMs were trained using Maximum Likelihood 

Estimation on the joint probability 𝑝(𝑥, 𝑦) using parallel acoustic-articulatory data. In 

order to get good inversion accuracy, 128 Gaussian mixture components were used in 

their experiments. The best performance was found when a mixture of 32 components 

was used.  

2.5.5 Hidden Markov model inversion 

Hiroya and Honda (Hiroya & Honda, 2004) recently developed a mapping 

algorithm using a hidden Markov model. In this approach, each phoneme is modeled by a 

context-dependent HMM and the optimal maximum a posteriori sequence of articulatory 

parameter estimation is computed through Viterbi alignment. HMMs of articulatory 

parameters were built for each phoneme and the mapping from the articulatory to 

acoustic domain was approximated in a piece-wise linear form with parameters trained 

from the parallel acoustic-articulatory data. In the inversion stage, an HMM state 
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sequence was derived from the speech signal via Viterbi decoding, and then articulatory 

feature values were estimated from the linear mapping and a smoothed output trajectory 

was generated. This model approximates the mapping between acoustic and articulatory 

domain as a linear function, which is not able to sufficiently capture the highly 

complicated non-linear relationship between articulatory and acoustic domains.  

Rather than combing acoustic and articulatory within a joint model, Zhang 

proposed an inversion method using two parallel HMM models (Zhang & Renals, 2008). 

In this approach, acoustic and articulatory HMMs are connected through a highly 

abstracted phoneme level representation. Instead of seeking a direct mapping, the 

articulatory domain can be mapped to acoustic domain through state sequence alignment 

under HMM framework. In Zhang’s paper, the reported RMS error is 1.705mm for 

speaker independent inversion. This is competitive with the lowest published errors, 

specifically Richmond’s multiple layer perceptron method discussed above.  

This approach based on parallel HMMs is well suited for implementing 

adaptation algorithms in a parallel fashion, allowing us to adapt articulatory models 

without kinematic data. In this dissertation, the HMM based inversion framework will be 

used and extended to work in a speaker independent manner. 

2.6 Summary 

This chapter has reviewed the technical background needed to develop speaker 

independent acoustic-to-articulatory inversion methods, including acoustic and 

articulatory data acquisition, modeling, speaker adaptation methods and existing 

inversion approaches. In this dissertation, a new acoustic-to-articulatory inversion 
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approach is proposed based on a parallel HMM method. This approach is a HMM based 

framework which is suitable for developing speaker independent inversion and 

implementing adaptation algorithms. The remainder of this dissertation will focus on data 

collection, articulatory feature extraction, and implementation and evaluation of the 

proposed speaker independent inversion system.  
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3 Marquette EMA-MAE corpus and articulatory feature 

extraction 

3.1 Introduction 

This chapter describes the EMA-MAE dataset, a new multi-speaker acoustic and 

EMA articulatory dataset which has been collected to investigate acoustic-articulator 

modeling and speaker independent acoustic-to-articulatory inversion. All of the inversion 

experiments in chapter 4 and 5 are based on this dataset. In addition to a detailed 

description of this corpus, methods for articulatory data preprocessing and articulatory 

feature extraction will also be discussed.  

The collection of this corpus has been supported by the National Science 

Foundation under NSF IIS-1320892. 

3.2 Marquette EMA-MAE corpus 

There is a significant need for more comprehensive electromagnetic 

articulography (EMA) datasets that can provide matched acoustic and articulatory 

kinematic data with good spatial and temporal resolution. To meet this need, the 

Marquette University Electromagnetic Articulography Mandarin Accented English 

(EMA-MAE) corpus has been collected to provide kinematic and acoustic data from 40 

gender and dialect balanced native English speakers and Mandarin accented English 

speakers.  
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3.2.1 Data collection system 

A Northern Digital NDI Wave Speech Research System has been used to collect 

the articulatory kinematic data. The Wave system is an EMA system specifically 

designed for tracking articulatory movements and articulatory kinematics. It provides two 

kinds of sensors, 5 DOF and 6 DOF. The 5 DOF sensors allow tracking of 𝑥, 𝑦, and 𝑧 

spatial coordinates, as well as angular coordinates characterizing rotation about the 

transverse axis (pitch) and anterior–posterior axis (roll) of the sensor. The 6 DOF sensors 

have the added capacity for tracking angular coordinates characterizing rotation about the 

inferior–superior axis of the sensor (yaw). The system samples kinematic data at 400Hz, 

and acoustic data at 22.05 KHz. In the most commonly used configuration as well as one 

in our set up, a single 6 DOF sensor is used as a reference sensor with all other sensors 

being 5 DOF and all position and orientation data provided relative to the primary 

reference sensor. 

3.2.2 Subjects 

The EMA-MAE corpus has 40 subjects, including two primary subject groups 

designated L1 and L2.  The L1 group consists of 10 male and 10 female native speakers 

of English, with an upper Midwest American English dialect background. The L2 group 

consists of 10 male and 10 female native speakers of Mandarin Chinese who speak 

English as a second language. Within the L2 group is a further dialectal division into 

subjects with a northern Beijing-region dialect background, and subjects with a southern 

Shanghai-region dialect background, with 5 male and 5 female speakers from each of 

these subgroups. 
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Subjects are between the ages of 18-40 with no history of speech, language, or 

hearing pathology, no history of orofacial surgery (other than typical dental extractions), 

and no history of use of anticonvulsant, antipsychotic, or anti-anxiety medications (as 

these factors may affect motor performance). 

3.2.3 Speech tasks 

The corpus includes approximately 45 minutes of synchronized acoustic and 

kinematic data for each speaker. In order to obtain necessary and sufficient data to 

characterize both segmental and supra-segmental variability pertinent to the 

characterization of English spoken by native-Mandarin talkers, as well as to complement 

existing databases, both word, sentence and paragraph level speech samples have been 

used. The word section covers the phonetic space of English vowels, using a 383 word 

list developed by Rogers (Rogers, 1997) to highlight primary phonemic contexts that 

influence intelligibility for native-Mandarin speakers of American-English. Subjects read 

330 text-prompted words in single-word citation form. Words were blocked into 

approximately 25 words per record, to allow monitoring of sensor adhesion and give 

participants regular rest and adjustment periods. The TIMIT database sentences 

(Garofolo et al., 1993; Zue, Seneff, & Glass, 1990) and Harvard Intelligibility Sentences 

(IEEE subcommittee on subjective measurements IEEE recommended practices for 

speech quality measurements.1969) forms the basis for the sentence level speech 

samples. In addition, 9 contrastive stress sentences are chosen for emphasizing the use of 

contrastive stress in differentiating semantic form.  Six paragraphs of various lengths are 

also included for emphasizing different aspects of speech including general intelligibility, 
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breath group utilization, accented-English intelligibility, speaking rate and segmental 

timing.  

3.2.4 Data collection framework set up 

The EMA-MAE corpus includes synchronous acoustic and three-dimensional 

kinematic articulator data. Data were collected in an acoustic booth with participants 

seated in a custom plastic chair designed to allow subjects to maintain a comfortable 

speaking posture within the electromagnetic field. Acoustic records were obtained using a 

cardioid pattern directional condenser microphone positioned approximately 1 meter 

from participants.  

As shown in Figure 3.1, articulatory sensors included the jaw (MI) (lower front 

incisor), lower lip (LL), upper lip (UL), tongue body (TD), and tongue tip (TT), all 

placed in the midsagittal plane. In addition, there were two lateral sensors, one (LC) at 

the left corner of the mouth to help indicate lip rounding and one (LT) in the left central 

midpoint of the tongue body to help indicate lateral tongue curvature. 

 

Figure 3.1 Sensor placement 
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A reference sensor (𝑅𝐸𝐹 sensor) was located near the bridge of the nose using a 

pair of plastic glasses. The reference sensor was a 6 DOF sensor, providing three 

dimensional position as well as three-dimensional orientation data.  All other sensors in 

the system were 5 DOF sensors, since these are significantly smaller and have less 

interference with natural subject articulation. 5 DOF sensors provide three dimensional 

position information but only two dimensional orientation data. This identifies the 

orientation, i.e., pitch and roll, of the sensor plane (which physically is a small wound 

toroidal coil) but no information about yaw of this plane. Position data are given in 

millimeters. Orientation data are given in quaternion rotation format, indicating rotation 

axis and angle relative to a base orientation. 

Each subject underwent an initial calibration process in which softened dental 

wax was formed into a bite plate around a tongue depressor and a dental impression 

taken. Biteplate sensors are placed at the front incisor (𝑂𝑆) and at the mid-point of the 

back molars (𝑀𝑆) to indicate the midsaggital and maxillary occlusal planes relative to the 

reference sensor, which is used to form a consistent articulatory working space. Biteplate 

configuration is pictured in Figure 3.2. 

 

Figure 3.2 Biteplate with 𝑂𝑆 and 𝑀𝑆 sensors position 
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Subjects also underwent a palatal measurement in which the experimenter used a 

sensor-tipped palate wand to collect palatal reference data which includes a trace of the 

mid-sagittal palate line, a series of transverse traces across the palate, and both inner 

perimeter and outer perimeter dental traces at the gum line. As described in the next 

section, this palate information can be used to dertermine vocal tract configuration 

relative to tongue sensors. In addition to the biteplate and palatal measurement processes, 

subjects were given an acclimation period and opportunity to read some practice 

materials once sensors had been attached. 

3.2.5 Annotation and transcription 

For all subjects, a phoneme-level (broad) transcription is provided. Transcription 

was completed by trained graduate students in Marquette’s Speech Pathology and 

Audiology program using American English (IPA subset) phonemes. All transcriptions 

were completed by listeners with a common upper Midwest American English dialect. 

Multiple listener transcriptions are included for L2 subjects, to use for estimating 

perceived phoneme variability and perceived intelligibility. For the connected speech 

data, timestamps of clear pause locations (breath group and/or sentence boundaries) are 

included so that the paragraph-level utterances and transcriptions can be easily 

subdivided into sentence level data if desired. 
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3.3 Articulatory space calibration 

3.3.1 Internal head-correction 

Raw data from the EMA system are in a global coordinate space relative to the 

system’s electromagnetic field.  There is significant data processing required to 

compensate for subject movement and physiology to provide data in an appropriate 

articulatory working space.  

Data is produced by the system either globally, relative to the Cartesian 

coordinate space established by the fixed electromagnetic field, or locally relative to the 

reference sensor, such that head motion is automatically removed from the data, called 

“head-correction”. Transformation of the global coordinate data into the local coordinate 

space relative to the fixed reference sensor is handled in real-time by the NDI Wave 

software. As described in Section 3.2.4, a reference sensor mounted on a pair of plastic 

glasses is used with all subjects to determine and compensate for head movements. 

Position data are adjusted by a direct linear translation, and orientation data are adjusted 

through a quaternion rotation relative to the reference sensor’s orientation. 

In this initial head-corrected space, the origin is at the reference sensor and the 

Cartesian coordinate system is relative to the orientation of the reference sensor, typically 

carefully placed so that the 𝑋 axis represents anterior-posterior motion, the 𝑌 axis 

represents superior-inferior motion, and the 𝑍 axis represents lateral motion.  Thus the 

𝑋𝑌 plane is approximately the subject’s mid-sagittal plane and the 𝑋𝑍 plane is roughly 

parallel to the subject’s transverse plane, but these are not exact. In order to more 
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precisely orient the working space for each subject a bite-plate correction is implemented, 

as described in the next section. 

To establish some measures of head correction and biteplate calibration variance, 

about mid-way during the data collection process an additional calibration step was added 

in which subjects were asked to nod their heads up and down and move their heads back 

and forth with the bite plate in their mouths.  Analysis of these data indicated there were 

some problems with the NDI Wave head correction process, caused by mis-

synchronization between the reference sensor and the data sensors attached to channels 9-

16, which were on a secondary hardware unit. This issue affects only the MI jaw sensor, 

and is only a problem when there is relatively high velocity head motion so that the time 

lag creates inaccurate head correction. Details of this issue are available in the EMA-

MAE user manual. 

3.3.2 Bite-plate correction 

Since the articulatory data in the head-corrected space is only roughly oriented to 

the subject, a key initial problem in data-processing is to calibrate the data in a more 

accurate way so that kinematic data is represented in a baseline articulatory working 

space with clear anatomical reference points and orientation (Westbury, 1991). To do 

this, subject calibration data is typically used to re-orient the space according to the 

subject’s bite plate position. This can be accomplished in a number of different ways. In 

EMA-MAE corpus, a physical bite-plate with carefully placed sensors is used to identify 

the maxillary occlusal plane. Given the head-corrected measurement data recorded from 

the bite-plate, the goal is to translate and rotate the original coordinate space to create an 
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articulatory working space such that the 𝑋𝑌 plane is the mid-sagittal plane and the 𝑋𝑍 

plane is the maxillary occlusal plane, with the origin placed at the upper central front 

incisor.  

Although most EMA datasets currently available include a bite plate calibration in 

their preprocessing stage (Byrd, Browman, Goldstein, & Honorof, 1999; Gracco & Nye, 

1993; Krista, 2011; Westbury, 1994b), none of them provide a detailed description and 

error analysis of this processing, or the underlying assumptions on which the calibration 

is based. In this section, we detail a mathematical derivation of this calibration process. 

3.3.3 Target articulatory space 

The target articulatory space is based on each subject’s anatomy, as shown in 

Figure 3.3. The origin of the coordinate system is defined as the central point of the upper 

maxillary incisors. The vertical plane is defined as the mid-sagittal plane, and the 

horizontal plane is defined as the maxillary occlusal plane, which is the plane of contact 

between the maxillary and mandibular natural teeth. Relative to these two coordinate 

planes, the 𝑋 axis represents anterior-posterior motion, the 𝑌 axis represents superior-

inferior motion, and the 𝑍 axis represents lateral motion. The mid-sagittal plane is thus 

given by the 𝑋𝑌 axes and the maxillary occlusal plane by the 𝑋𝑍 axes. 
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Figure 3.3 Target articulatory referenced coordinate system 

By convention, the positive 𝑋 axis is forward of the incisors, so that the negative 

𝑋 axis follows the midsagittal line of the occlusal plane toward the back of throat. The 

positive 𝑍 axis runs perpendicularly to the 𝑋 axis on the occlusal plane toward the 

subject’s right.. The positive 𝑌 axis is perpendicular to the occlusal plane in the upward 

direction.  

Note that even this theoretical definition of articulatory space includes some 

physiological assumptions, the most prominent of which is that the midsagittal plane and 

maxillary occlusal plane are in fact perpendicular. This is not all guaranteed, since the 

location of the temporomandibular joints are unlikely to be exactly symmetric, and even 

less so the detailed dental features which create the occlusal plane itself. However, these 

deviations are typically quite small and have minimal impact on the creation of a useful 

articulatory space for data analysis.  

The fundamental goal of the data calibration process, called “bite-plate 

calibration”, is to ensure that the coordinate system represented by the data follows as 

closely as possible to the theoretical target articulatory space defined above. 
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3.3.4 Quaternion representation 

The NDI Wave system uses a quaternion format representation for all orientation 

data. The quaternion structure is a commonly used method to represent rotation and 

orientation (Hart, Francis, & Kauffman, 1994) in many different fields, including 

computer visualization and animation, object tracking and identification, and propulsion 

systems due to its compactness and robustness. The quaternion format will be used in this 

work to represent the rotation needed to implement the optimal calibration solution, with 

a basic overview given here. 

A quaternion is a 4-D unit vector  

𝑞 = [𝑞0, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧]  (3.1) 

where 𝑞0
2 + 𝑞𝑥

2 + 𝑞𝑦
2 + 𝑞𝑧

2 = 1. This vector can be used to represent an arbitrary single 

three-dimensional rotation. One of the simplest ways to visualize how a unit-normalized 

quaternion can be used to represent a rotation is to first consider an axis-angle viewpoint, 

where a rotation is represented by an angle 𝜃 around a unit axis 𝑣. A quaternion can be 

thought of as a “normalized” composite axis-angle vector, given by  

𝑞 = (cos
𝜃

2
, sin

𝜃

2
𝑣𝑥 , sin

𝜃

2
𝑣𝑦, sin

𝜃

2
𝑣𝑧) (3.2) 

where the vector part [𝑞𝑥, 𝑞𝑦, 𝑞𝑧] = sin(𝜃/2)𝑣 defines the axis of rotation, and the scalar 

part 𝑞0 = cos(𝜃/2) defines the degree of rotation. To rotate a point, with position 

represented by the vector 𝑝 ⃑⃑⃑  , by an angle 𝜃 around the axis 𝑣 to a new position, with 

position 𝑝𝑓𝑖𝑛𝑎𝑙,the following quaternion multiplication operation is applied: 
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𝑝𝑓𝑖𝑛𝑎𝑙 = 𝑄𝑃𝑄∗, (3.3) 

where 𝑃 = [0, 𝑝 ⃑⃑ ]. 

In the NDI system, sensor orientations are represented by a quaternion vector 

which indicates the amount of rotation a sensor has undergone relative to its established 

base orientation in the coordinate space. In the standard experimental configuration with 

a reference 6 DOF sensor 𝑅𝐸𝐹 and head-corrected data, the quaternion represents the 

orientation change relative to the orientation of the 𝑅𝐸𝐹 sensor plane. 

3.3.5 Calibration method 

Since the 𝑅𝐸𝐹 sensor is carefully placed in the midsagittal plane, and the 𝑂𝑆 and 

𝑀𝑆 sensors are also carefully placed along the centerline of the bite plate, an obvious 

choice for calibration is to rotate the space such that these three points all lie on the 𝑋𝑌 

plane, with the 𝑂𝑆 at the origin and the 𝑀𝑆 directly on the 𝑋 axis.  This will leave the 

𝑅𝐸𝐹 sensor in the midsaggital plane but not necessarily on the 𝑌 axis, since it may be 

somewhat forward or behind the vertical location of the 𝑂𝑆 sensor. 

Since the distance from 𝑂𝑆 to 𝑀𝑆, the distance from 𝑂𝑆 to 𝑅𝐸𝐹, and the 𝑀𝑆 −

𝑂𝑆 − 𝑅𝐸𝐹 angle can all be directly computed, the exact new coordinate locations for the 

𝑀𝑆 and REF sensors can be easily determined. The needed rotation for calibration, for 

which there is a single unique solution, is thus the rotation which will rotate the 𝑀𝑆 −

𝑂𝑆 − 𝑅𝐸𝐹 triangle onto these new target coordinates.  Since 𝑂𝑆 is the origin in both 

cases, solving for this rotation focuses on the locations of the 𝑀𝑆 and 𝑅𝐸𝐹 sensors. Let 

𝑀𝑆𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  and 𝑀𝑆𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   represent the 𝑀𝑆 location in local and articulatory coordinates, 
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respectively, while 𝑅𝐸𝐹𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and 𝑅𝐸𝐹𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   are the corresponding head reference sensor 

coordinates. To solve for the necessary rotation, we take the approach of solving for the 

set of possible rotations for the 𝑀𝑆 point and the 𝑅𝐸𝐹 point individually, then taking the 

intersection of the two. There are an infinite number of rotations that will rotate the 

original 𝑀𝑆𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  onto 𝑀𝑆𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . Figure 3.4 illustrates how to describe the set of rotation axes for 

this case. The bisecting vector 𝐵𝑆𝑀𝑆
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   represents one possible axis, with a corresponding 

rotation angle of 180 degrees, and the normal vector 𝑉𝑀𝑆
⃑⃑⃑⃑ ⃑⃑  ⃑ represents another possible axis, 

with a rotation angle equal to the angle between the two points. Any line on the plane 

consisting of 𝐵𝑆𝑀𝑆
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and 𝑉𝑀𝑆

⃑⃑⃑⃑ ⃑⃑  ⃑ is also a possible axis. For any of these lines, the required 

rotation can be visualized as rotation along the surface of a cone, with the rotation axis as 

the center of the cone. 

LMS
……

MSBS

MSV

All possible rotation axis

AMS
 

Figure 3.4 3D visualization of the possible rotation axes from 𝑀𝑆𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  onto 𝑀𝑆𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . 

Mathematically, the vector normal to the plane of all possible rotation axes can be 

defined using the cross-product of the two axes above  

〈𝑉𝑀𝑆
⃑⃑⃑⃑ ⃑⃑  ⃑, 𝐵𝑆𝑀𝑆

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   〉, (3.4) 
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where 𝑉𝑀𝑆
⃑⃑⃑⃑ ⃑⃑  ⃑ =  〈𝑀𝑆𝐿

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑀𝑆𝐴
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    〉 and 𝐵𝑆𝑀𝑆

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = (𝑀𝑆𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ +  𝑀𝑆𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) 2⁄ . 

Similarly, there are an infinite number of rotations that will rotate the original 

𝑅𝐸𝐹𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   onto 𝑅𝐸𝐹𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . By following the same steps a second plane is found that includes all 

possible axes which will accomplish this rotation, with normal vector 〈𝑉𝑅𝐸𝐹
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝐵𝑆𝑅𝐸𝐹

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉, 

where 𝑉𝑅𝐸𝐹
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  =  〈𝑅𝐸𝐹𝐿

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑅𝐸𝐹𝐴
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉 and 𝐵𝑆𝑅𝐸𝐹

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = (𝑅𝐸𝐹𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  +  𝑅𝐸𝐹𝐴

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )/2 . Solving for the 

intersection of these two planes gives the unique rotation axis that will simultaneously 

accomplish both of the desired rotations, rotating the original 𝑀𝑆 − 𝑂𝑆 − 𝑅𝐸𝐹 triangle 

onto the 𝑋𝑌plane: 

𝐴𝑥𝑖𝑠⃑⃑⃑⃑ ⃑⃑⃑⃑  ⃑ =  〈〈𝑉𝑀𝑆
⃑⃑⃑⃑ ⃑⃑  ⃑, 𝐵𝑆𝑀𝑆

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉, 〈𝑉𝑅𝐸𝐹
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝐵𝑆𝑅𝐸𝐹

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉〉  (3.5) 

After finding the rotation axis, it is necessary to solve for the correct rotation 

angle 𝜃. Figure 3.5 illustrates this computation, based on the visualization of the rotation 

cone.  

θ 
r

ɑ 

Axis

LMS
AMS

 

Figure 3.5 3-D visualization of the rotation angle 
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Using this visualization, the required rotation angle can be determined trigonometrically 

via 

𝑟 =  |𝑀𝑆𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ | 𝑠𝑖𝑛 𝛼 (3.6) 

𝜃 = 2 𝑠𝑖𝑛−1(
1/2|𝑀𝑆𝐿⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑− 𝑀𝑆𝐴⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|

𝑟
), (3.7) 

where α is the angle between the original 𝑀𝑆 vector 𝑀𝑆𝐿 and the rotation axis from this 

can be converted into its equivalent quaternion form 

𝑞𝑠𝑡 = [𝑐𝑜𝑠(
𝜃

2
), 𝑠𝑖𝑛(

𝜃

2
)𝐴𝑥𝑖𝑠𝑥
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, 𝑠𝑖𝑛(

𝜃

2
)𝐴𝑥𝑖𝑠𝑦
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, 𝑠𝑖𝑛(

𝜃

2
)𝐴𝑥𝑖𝑠𝑧
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ]. (3.8) 

This 𝑞 can applied using quaternion multiplication as given in Equation (3.3) to any data 

record to transform into the appropriate articulatory space coordinate system.  

3.3.6 Palate mesh interpolation 

For each subject, the palate record includes a trace of the mid-sagittal palate line, 

a series of transverse traces across the palate, and both inner perimeter and outer 

perimeter dental traces at the gum line. Together with the bite plate record, this 

information provides reference data that can be used to calculate physiologically-

referenced vocal tract measures. The palate mesh is computed using the thin plate spline 

method (Yunusova et al., 2012) with a smoothing factor of 0.05 as recommended by error 

and variance analysis, with a vertical half-sensor offset to account for the wand sensor 

thickness.  

 



42 
 

3.4 Articulatory feature extraction 

3.4.1 Raw EMA measurement or vocal tract feature 

The EMA technique provides a simple way to measure the mechanism of 

articulatory motion. The measured trajectory consists of a set of position coordinates for 

each sensor during speech. However, the reliability and usefulness of these raw position 

measurements as a characterization of the speech generation process, and how they 

reflect the discriminability of different phonemes, are still unknown. Some prior research 

has suggested that raw EMA measurements are reliable cues to the acoustic signal. Toda 

(Toda et al., 2004) showed that the speech spectrum can be produced from EMA 

measurements by learning statistical dependencies between position trajectory and the 

corresponding speech signal, which indicates that the raw measurement do relate to the 

output of the speech generation process. Most research on acoustic-to-articulatory 

inversion uses raw position EMA measurement, with relatively good results. While these 

attempts do provide indirect evidence of the relation between EMA measurements and 

speech production mechanism, there is still an open question about the best articulatory 

variables to use for both this and other tasks. 

From the perspective of acoustic-to-articulatory inversion and related 

applications, there are several reasons that raw EMA measurement may not be the best 

features to use: 

1. The main goal is to identify articulatory features that relate to signal acoustics.  

These acoustics are primarily driven by the cross-section of the vocal tract 

opening. Without reference to the surrounding tissue, and in particular to the 
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upper palate which bounds the vocal tract opening, direct sensor measures are 

not as connected to vocal tract shape, and therefore to acoustics, as they could 

be.  

2. The EMA measures represent only the locations of very small number of 

points on the vocal tract. However, the vocal tract is a very complex structure 

which cannot be fully characterized by such a small number of articulatory 

points. By incorporating additional information such as palate position, dental 

boundary, or inferred tongue shape using sensor orientation, it is possible to 

increase the amount of information contained in the articulatory features. 

3.  In many cases, the most acoustically relevant articulatory features may be a 

combination of sensor positions or sensor positions and orientations, and it 

would be more effective to combine the sensor data in an appropriate way 

before modeling.  One example of this is lip opening – while upperlip (UL), 

lowerlip (LL), positions (6 variables in all, including all three coordinates of 

each sensor) are all relevant to acoustics, the simple measure of vertical lip 

opening = (ULy - LLy), is much more efficient representation. 

In order to derive reliable and phonetic meaningful features to characterize vocal 

tract shapes from EMA measurements, a model-based approach is used to estimate the 

vocal tract configuration from direct EMA measurement in this dissertation. Several 

theoretical models that describe the speech production process have been proposed in 

previous research.  In this work, we will primarily use Maeda’s model, which represents 

a mid-sagittal configuration of the vocal tract (Maeda, 1990).  
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3.4.2 Proposed articulatory feature 

A geometric transformation from the EMA kinematic measurements to vocal tract 

(VT) parameters based on the mid-sagittal representation of the vocal tract from Maeda’s 

model has been developed. These parameters include the following articulatory feature 

variables: 

Table 3.1 Articulatory features 

 Description 

VT1 Tongue dorsum normalized horizontal position 

VT2 Tongue dorsum vertical height to hard palate 

VT3 Tongue body normalized horizontal position 

VT4 Tongue body vertical height to hard palate 

VT5 Tongue apex normalized horizontal position 

VT6 Tongue apex vertical height to hard palate 

VT7 Normalized horizontal lip protrusion 

VT8 Normalized vertical lip separation 

 

To create a normalized working space, the distance between the center incisors 

and the middle point of the back molar from each speaker’s bite plate record is used as a 

normalization scalar when calculating the horizontal position of the tongue, to give better 

information regarding tongue position relative to the whole vocal tract across individuals. 

The horizontal (𝑋 axis) variables VT1, 3, 5, and 7, are all calculated directly from sensor 

position divided by this normalization constant. The hypothesis is that this will lead to 



45 
 

improvement in cross-subject variability but not variability or inversion accuracy within a 

single subject. The vertical ( 𝑌 axis) variables VT2, 4, and 6; however, are computed 

from the vertical distance between the sensor position and the palate, representing vocal 

tract height at the sensor positions, including two midsagittal positions and one lateral 

position. It is hypothesized that these vertical articulatory variables will be significantly 

more representative of vocal tract height and cross section area and therefore of acoustic 

spectral characteristics both within and across subjects. Lip protrusion VT7 is taken 

directly from the sensor 𝑋 position without any normalization, and vertical lip separation 

VT8 is calculated as lip separation rescaled to a [0, 1] working space.  

𝑉𝑇8 =
(𝑈𝐿𝑦−𝐿𝐿𝑦)−(𝑈𝐿𝑦−𝐿𝐿𝑦)𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(𝑈𝐿𝑦−𝐿𝐿𝑦)𝑚𝑎𝑥
 (3.9) 

3.4.3 Working space analysis 

To compare the working space based on direct EMA measurements with that 

using the proposed palate-referenced features, the variance of the features is used, overall 

and within specific vowel configurations. An emphasis is placed on the variance in the 

vertical direction where the palate referencing has significant impact on the feature 

information. Figure 3.6 compares the feature spaces for the vowel /i:/ (in word “see, 

heat”) for a female native English speaker. Focusing on the vertical dimension, it can be 

seen that the overall working space is smaller and more compressed in the proposed 

palate-referenced feature space. 
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Figure 3.6 Feature space of vowel /i:/ for direct sensor measures (left) and 

proposed articulatory features (right) 

To quantify the difference between these features spaces, an ANOVA analysis for the 

vertical direction features is implemented across all 20 native English speakers for the 

vowel /i:/, with results shown in Figure 3.7. The proposed features have a lower F score 

and higher p value compared to the raw sensor movement, indicating a lower cross-

speaker variance for this vowel in the articulatory feature working space. By reducing 

cross-speaker variance, the proposed articulatory features reduced individuality and 

represent a more common working space across speakers.  
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Figure 3.7 ANOVA analysis of single vowel /i:/ across speakers 

To illustrate inter-vowel difference and feature discriminability, Figure 3.8 compares the 

working spaces for three different vowels for a single female speaker, while Figure 3.9 

shows the corresponding ANOVA analysis using the combined data from all 20 speakers. 

The selected vowels are /i:/ (as in “heat”), /ou/ (as in “home”), and /ei/ (as in “ate”), 

which are acoustically distinct and widely separated in terms of formant values. It can be 

seen that the overlap between the vowels is significantly reduced using the proposed 

articulatory variables. The larger F score shows that the separability between different 

vowels is higher for the proposed features than for the raw sensor movements. This 

supports the hypothesis that the proposed features do a more effective job of representing 

articulatory motion for tasks such as speech recognition and modeling.  
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Figure 3.8 Feature space distributions for /i:/ , /ou/ and /ei/ for direct sensor 

measures (left) and proposed articulatory features (right) 



49 
 

 

Figure 3.9 Feature space ANOVA analysis vowels /i:/, /ou/, and /ei/, using 

combined data from all 20 speakers 

The results in figures 3.6 and 3.7 show that cross-speaker variance is significantly 

reduced in the palate-reference feature space, and figures 3.8 and 3.9 show that these 

features have more discriminability between distinct vowels, strongly suggesting that the 

new features have better discriminatory representations than direct kinematic data. These 

observations suggest that the proposed palate-referenced articulatory features are a more 

effective overall representation, with a more compact working space and better 

discrimination ability. 
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3.5 Summary 

This chapter has introduced the Marquette EMA-MAE bilingual corpus. This is 

the first EMA dataset to have such a substantial speaker set, including 40 speakers 

representing two native language groups, and also the first to include lateral tongue and 

lip sensors for additional 3-dimensional characterization of tongue shape and lip 

rounding. Data preprocessing methods for this dataset includes head motion correction, 

bite plate calibration and palate surface estimation, all of which have been discussed here 

in detail. For the purpose of acoustic-to-articulatory inversion, we have proposed an 

articulatory feature extraction method using EMA position measurements based on 

Maeda’s vocal tract model. A direct comparison of the working space showed that the 

proposed articulatory features have smaller within-vowel variance and more 

discriminative ability across vowels within the same speaker. In the next Chapter, we will 

use the Marquette EMA-MAE corpus to evaluate the proposed acoustic-to-articulatory 

inversion system and will see the performance of the proposed articulatory features under 

this new inversion system.   
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4 Acoustic-to-articulatory inversion system 

4.1 Introduction 

This chapter describes a Hidden Markov Model based mapping that estimates 

articulatory parameters from an acoustic speech signal. Unlike the HMM based inversion 

models discussed in Chapter 2, this dual model maps the acoustic and articulatory 

domains through state sequence alignment, in the context of a conventional HMM. The 

acoustic and articulatory features are treated as two streams in the training stage in order 

to ensure that the acoustic and articulatory HMMs have matching state boundaries. The 

parameters of these two HMMs are independently estimated, and no correlation between 

the acoustic and articulatory transition variables are taken into account. The performance 

is evaluated by root mean square error as well as correlation between estimated and true 

articulatory parameters. Sections 4.2 and 4.3 will discuss the complex nature of the 

inversion problem and the basic framework of the HMM inversion system. Experimental 

set-up and results under different model parameter configurations will be given in section 

4.4 and 4.5, respectively. Finally, section 4.6 summarizes the HMM inversion model used 

in this dissertation. 

4.2 The nature of acoustic-to-articulatory inversion 

Given that the mapping from acoustics to articulatory shape is one-to-many, as 

described in Chapter 2, how frequently and to what extent does non-uniqueness occur in 

normal human speech, and how does this affect inversion algorithms which necessarily 

do one-to-one inversion? Qin (Qin & Carreira-Perpinan, 2007) and his group investigated 
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this and found that only 5% of acoustic features mapped to a multi-modal cluster in 

articulatory space. This study suggests that non-uniqueness is a less frequent event and 

that most of the time a unique vocal tract shape is adopted for human speech production 

in practice.  

Another issue that needs to be considered is the difference in feature complexity 

between the cepstrum feature used for acoustic signals and the articulatory positional 

features, which have a smooth, slow-varying nature. Inversion algorithms need to be able 

to generate less complex articulatory features. Some research has a post-processing step 

to smooth the inversion output, such as a low-pass filter (Richmond, 2002) or Kalman 

filter. In an HMM based inversion model, the differences in feature complexity are 

usually represented by assigning different number of Gaussian mixtures.  

Unique inversion results from an acoustic speech signal are not guaranteed 

without imposing additional constraints. Not all configurations generated by a typical 

inversion model are physiologically possible in human speech production (Richmond, 

2002). 

4.3 HMM-based acoustic-to-articulatory inversion 

Due to the ill-posed nature of the inversion problem, it is reasonable to connect 

the articulatory and acoustic domains through a highly abstracted phoneme level 

representation, instead of seeking a direct mapping, as discussed previously in Section 

2.5.5. The diagram of such an acoustic-articulatory model is illustrated in figure 4.1. In 

this approach, the idea is to build two separate HMM in both acoustic and articulatory 

space through state sequence synchronization. Parallel acoustic and articulatory data is 
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used to train acoustic and articulatory HMMs separately. The two HMMs are aligned by 

state sequences for a given phonetic unit. Within each state, a GMM is used for modeling 

the statistical distribution of the feature vectors in each domain. The number of mixtures 

differs because the acoustic features have a more complex distribution than the 

articulatory trajectory. In the inversion stage, the test speech signal is input to the acoustic 

HMM to derive an optimal HMM state sequence using the Viterbi algorithm, and the 

corresponding aligned articulatory HMMs can be used to recover the articulatory 

trajectory. The articulatory HMM generates a smoothed position trajectory, using the 

articulatory means combined with a dynamic smooth window of the articulatory 

distribution, based on the maximum likelihood parameter generation algorithm described 

in the following section.  
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Figure 4.1 Diagram of the HMM-based articulatory-to-acoustic inversion system. 

4.3.1 Training 

The acoustic and articulatory HMMs are trained separately using the maximum 

likelihood Expectation Maximization algorithm under standard HMM training 

procedures. The acoustic HMM is trained first, after which the trained acoustic models 

are used to derive state level alignment for training of articulatory HMM parameters.  
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4.3.2 Forced alignment 

In the inversion stage, the speech signal and phone labels are input into the 

acoustic HMM, and a state sequence is produced by applying forced alignment with the 

Viterbi algorithm. The articulatory states matching the corresponding acoustic states are 

concatenated into an articulatory state sequence.  

4.3.3 Maximum likelihood parameter generation using dynamic features 

Once the articulatory states alignment is generated, the recovery algorithm needs 

to estimate a smooth and slow changing articulatory trajectory from the HMM state 

sequence. The observation data sequence 𝑂 is estimated by maximizing 𝑃(𝑂|𝑄, 𝜆) with 

respect to 𝑂 for a fixed state sequence 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑡]. The logarithm of  𝑃(𝑂|𝑄, 𝜆) 

can be written as 

𝑙𝑜𝑔𝑃(𝑂|𝑄, 𝜆) = − 
1

2
𝑂𝑇Σ−1𝑂 + 𝑂𝑇Σ−1𝑈 + 𝐾, (4.1) 

where 

Σ−1 = 𝑑𝑖𝑎𝑔[Σ𝑞1,𝑖1
−1 , Σ𝑞2,𝑖2

−1 , … , Σ𝑞𝑡,𝑖𝑡
−1  ] (4.2) 

and 

𝑈 = [𝜇𝑞1,𝑖1
𝑇 , 𝜇𝑞2,𝑖2

𝑇 , … , 𝜇𝑞𝑡,𝑖𝑡
𝑇  ]𝑇. (4.3) 

Here 𝜇𝑞𝑡,𝑖𝑡 and Σ𝑞𝑡,𝑖𝑡 are the 3𝑀 × 1 mean vector and the 3𝑀 × 3𝑀 covariance 

matrix associated with i-th mixture of state 𝑞𝑡, respectively.  The constant 𝐾 is 

independent of 𝑂. 
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It is clear from this that 𝑃(𝑂|𝑄, 𝜆) is maximized when 𝑂 = 𝑈, that is, when the 

output parameter vector sequence is the sequence of mean vectors, resulting in a step-

wise function, because this is the maximum likelihood sequence for the sequence of 

Gaussians. In order to recover a smooth articulatory trajectory from articulatory HMM 

model parameters, dynamic features can be used, as described in (Tokuda, Yoshimura, 

Masuko, & Kobayashi, 2000). The basic idea is to build a matrix which includes dynamic 

features and use this information to smooth the output state mean value. The 

transformation is given as  

𝑜𝑡 = 𝑤𝑡𝑐𝑡 (4.4) 

𝑜𝑡 = [𝑐𝑡, ∆𝑐𝑡, ∆
2𝑐𝑡 ] , (4.5) 

where 𝑜𝑡 is the feature vector at time 𝑡,which includes static features 𝑐𝑡 , dynamic delta 

(velocity) coefficients ∆𝑐𝑡, and delta-delta (acceleration) coefficients ∆2𝑐𝑡. 𝑤𝑡 is a 3 𝑏𝑦 𝑇  

transformation matrix, where T is the total number of frames, defined by 

𝑤𝑡 = [
0, … , 0
0, … , 0
0, … , 0

    

0, …

𝑤1(−𝐿), … ,

𝑤2(−𝐿), … ,
   

1, … , 0,

𝑤1(0), … , 𝑤1(𝐿),

𝑤2(0), … , 𝑤2(𝐿),
    

0, … , 0
0, … , 0
0, … , 0

] . (4.6) 

The elements in the first row are all zero except for the 𝑡𝑡ℎ column which 

corresponds to the static feature at the 𝑡𝑡ℎ frame. The second and the third rows represent 

the coefficients for computing the dynamic delta and delta-delta features. 𝐿 is the window 

length defined to calculate those features. The augmented feature vector over 𝑡 frames 

can be written as follows: 
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[
 
 
 
 
𝑜1

𝑜2

...
𝑜𝑡]

 
 
 
 

=  

[
 
 
 
 
𝑤1

𝑤2

...
𝑤𝑡]

 
 
 
 

 

[
 
 
 
 
𝑐1

𝑐2

...
𝑐𝑡]

 
 
 
 

.. (4.7) 

Letting W = 

[
 
 
 
 
w1

w2

...
wt ]

 
 
 
 

 , we have 

𝑂 = 𝑊𝐶. (4.8) 

Maximizing 𝑃(𝑂|𝑄, 𝜆) with respect to 𝑂 is equivalent to maximizing with respect to 𝐶. 

By setting 

𝜕𝑙𝑜𝑔𝑃(𝑊𝐶|𝑄,𝜆)

𝜕𝐶
= 0,  (4.9) 

we obtain a set of equations 

𝑊𝑇Σ−1𝑊𝐶 = 𝑊𝑇Σ−1𝑈𝑇. (4.10) 

Solving these equations, the static feature trajectory estimate is recovered from the state 

sequence parameters via 

𝐶 = 𝑊−1Σ(𝑊𝑇)−1𝑊𝑇Σ−1𝑈𝑇 . (4.11) 

Figure 4.2 shows an example of a recovered trajectory with dynamic features. 

Unlike the stepwise mean output of a conventional HMM, the output from this model is a 

smoothed trajectory. 
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Figure 4.2 Recovered static feature incorporating dynamic features 

4.4 Experimental set up 

4.4.1 Data pre-processing 

A male native English speaker’s acoustic and kinematic data from the EMA-MAE 

database has been used for these experiments. The acoustic feature vector has 39 

dimensions including 12 MFCCs plus energy, along with their first and second 

derivatives. The EMA data is decimated (down sampled with an anti-aliasing filter) to 

100 Hz to match the 10 ms frame shifting rate of the acoustic features. Five state left-to-

right mono-phone models with differing number of Gaussian mixtures per state are used 

for training and testing. A 9-fold cross validation test was chosen to measure the accuracy 

of the inversion, selected for convenience since there are 198 utterances, an even multiple 

of 9. These utterances are divided into 9 partitions consisting of 22 sentences, with one 

partition used for the testing and the other 8 partitions used for training, and the process 

repeated 9 times with each partition used as test data once. 
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4.4.2 Evaluation metrics 

Metrics for performance evaluation include the deviation between the actual and 

estimated articulatory position values and the correlation with the actual articulator 

trajectories. Denoting the actual values of the articulator measure as 𝑦 and the 

corresponding values of the estimated output as 𝑓(𝑥), the normalized RMS error over the 

whole test set is calculated as: 

𝐸𝑟𝑚𝑠 =
√

1

𝑚
∑ (𝑓(𝑥𝑖)−𝑦𝑖)

2𝑚
𝑖=1

𝑠𝑡𝑑(𝑦)
 , (4.12) 

where 𝑚 is the number of examples in the test set. 𝑦𝑖 is the true articulatory variable value, 

𝑓(𝑥𝑖)  is the inversion output, and 𝑠𝑡𝑑(𝑦) is the standard deviation of the articulatory 

variable across the full test set. This normalized RMS error is used to evaluate inversion 

performance for the proposed articulatory feature across different scales.  

Correlation is  

𝑟 =
∑ (𝑓(𝑥𝑖)−𝑓(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅)(𝑦𝑖−𝑦𝑖̅)

𝑚
𝑖=1

√∑ (𝑓(𝑥𝑖)−𝑓(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅)2 ∑ (𝑦𝑖−𝑦𝑖̅)2
𝑚
𝑖=1

𝑚
𝑖=1

 , (4.13) 

where 𝑓(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅ and 𝑦𝑖̅ are the means of the estimated and actual articulatory values, 

respectively. 

A good articulatory inversion system is expected to obtain low RMS error and 

high correlation with respect to real articulatory data. In prior work, several different 

EMA datasets have been used across various different methodologies, which makes it 

difficult to compare results or have a strong frame of reference for expected performance. 
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However, MOCHA-TIMIT has been the most widely used EMA dataset. The lowest 

RMS error reported is from Richmond’s trajectory mixture density networks (Richmond, 

2002) which is 0.99mm on the MNGU0 speaker data.  

4.5 Results 

4.5.1 Model complexity influence in terms of state alignment 

The quality of the HMM state alignment, both for training the articulatory HMMs 

and for deriving the articulatory feature inversion, is important to the overall 

performance. In the HMM based inversion described in section 4.3, the HMM state 

alignment is derived from acoustic HMMs by forced alignment with the phone label 

sequence. This section provides a closer examination of how the quality of these 

alignments impact the inversion performance. 

The accuracy of the derived HMM alignment depends on the quality of acoustic 

models. In conventional speech recognition Gaussian mixture models are used to model 

the state emission distribution. A higher number of mixtures normally yields better 

acoustic models given sufficient training data. Thus increasing the number of mixtures in 

the acoustic HMM can improve the quality of state alignment for articulatory HMM 

training and inversion. In this experiment, the number of mixtures is increased from 1 up 

to 12, and the inversion performance is compared under these different alignments. The 

average normalized RMS error and correlation are used to analyze the effect of using 

different number of Gaussian mixture components in the acoustic model. Figure 4.3 and 

table 4.1 - 4.2 show the results. 
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Figure 4.3 Inversion performance for an increasing number of acoustic mixtures 

Figure 4.3 shows the average normalized RMS error and correlation across eight 

articulatory features under different acoustic models. The higher the number of mixture 

components used for alignment, the lower the normalized RMS error and the higher the 

correlation initially. The best performance is observed at seven mixtures, but from 8 to 12 

mixtures, the inversion performance drops back down to the level of single mixture. 

Normally, the upper limit on the number of mixtures, which is directly proportional to the 

total number of model parameters, is determined by the quantity of training data. In order 

to ensure that the model is sufficiently trained and results will be generalizable to new 

unseen data, a sufficient number of examples is required to estimate means and variances 

for each mixture in each state. If the number of parameters is increased beyond this point, 

the model will begin to over fit to the training data, and test set accuracy will begin to 
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decrease. In this case, using more than 8 mixtures indicates that the model is starting to 

over fit the training data.  

Tables 4.1 and 4.2 show the normalized RMS error and correlation for individual 

articulatory features under different numbers of mixtures. The best performance can be 

found using 7 mixtures for every articulatory feature which indicates that the alignment 

under this model is optimal in terms of inversion accuracy.  

Table 4.1 Normalized RMS error for individual articulatory features 

 

Table 4.2 Correlation for individual articulatory features 

 

1 0.94 0.90 1.03 0.96 1.02 0.77 0.79 0.87

2 0.96 0.90 1.01 0.95 1.00 0.77 0.80 0.87

3 0.92 0.90 1.02 0.96 1.02 0.78 0.80 0.85

4 0.92 0.89 1.01 0.95 1.02 0.78 0.82 0.86

5 0.95 0.90 1.00 0.96 1.00 0.77 0.79 0.86

6 0.93 0.89 1.00 0.94 1.00 0.76 0.79 0.87

7 0.92 0.87 0.99 0.94 0.99 0.75 0.79 0.87

8 0.93 0.91 1.00 0.98 1.00 0.78 0.81 0.87

9 0.94 0.91 1.00 0.97 1.00 0.77 0.81 0.87

10 0.95 0.90 0.99 0.98 1.00 0.79 0.80 0.87

11 0.95 0.92 1.00 0.97 1.03 0.80 0.81 0.88

12 0.97 0.92 1.01 0.98 1.03 0.79 0.81 0.88

                      Articulatory feature

Number of mixtures
VT1 VT2 VT3 VT4 VT5 VT6 VT7 VT8

1 0.71 0.76 0.70 0.72 0.69 0.78 0.73 0.81

2 0.71 0.77 0.69 0.71 0.69 0.79 0.77 0.80

3 0.73 0.77 0.69 0.71 0.69 0.79 0.78 0.81

4 0.72 0.76 0.71 0.72 0.69 0.80 0.75 0.81

5 0.73 0.76 0.71 0.73 0.69 0.81 0.76 0.81

6 0.74 0.76 0.71 0.73 0.69 0.81 0.76 0.82

7 0.74 0.78 0.72 0.74 0.70 0.82 0.79 0.83

8 0.73 0.74 0.71 0.70 0.70 0.79 0.75 0.80

9 0.73 0.74 0.71 0.69 0.69 0.79 0.74 0.79

10 0.72 0.74 0.71 0.70 0.69 0.79 0.74 0.80

11 0.72 0.74 0.71 0.69 0.70 0.79 0.74 0.79

12 0.71 0.73 0.71 0.70 0.69 0.79 0.73 0.80

                      Articulatory feature

Number of mixtures
VT1 VT2 VT3 VT4 VT5 VT6 VT7 VT8
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Overall, these results in general agree with the idea that even when the articulatory 

HMM uses a single Gaussian to generate output, the inversion system can still benefit from 

using a more complex acoustic HMM to derive better state alignment. 

4.5.2 Dynamic window impact 

The maximum likelihood parameter generation algorithm described in 4.3.3 uses 

static and dynamic features to recover the slowly changing trajectory. The coefficients in 

the 𝑊 matrix are the same coefficients used to calculate delta and delta-delta features. 

Different window types will have different impact on the recovered trajectory. In this 

section, the impact of two different common windows on the inversion performance is 

investigated. Normally, the delta coefficient (velocity) is an MSE estimate of the slope of 

a line passing the data points. The solution is derived from linear regression by the given 

data. Delta-delta coefficients (acceleration) are traditionally calculated as the delta of the 

delta. However, the best estimate of the acceleration in a maximum likelihood sense is 

the high order coefficient of a second order polynomial passing through the data. In the 

following experiments, two different methods to calculate the velocity and acceleration 

coefficients are implemented for the inversion system: 

Method #1: Analytic solution of the velocity from the first order regression, 

approximate estimation of acceleration from repeated first order regression on the 

velocity coefficients. (HTK method). In automatic speech recognition, such as in the 

well-known Hidden Markov Model Toolkit (HTK) it has traditionally been common to 

calculate delta and delta-delta coefficients as follows: 
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Δ𝑐𝑡 = 
∑ 𝜃𝑐𝑡+𝜃

𝑛
𝜃=−𝑛

∑ 𝜃2𝑛
𝜃=−𝑛

   (4.14) 

Δ2𝑐𝑡 = 
∑ 𝜃∆𝑐𝑡+𝜃

𝑛
𝜃=−𝑛

∑ 𝜃2𝑛
𝜃=−𝑛

 , (4.15) 

where 𝑐𝑡 is the static feature at frame 𝑡, and 𝑛 is the half window length used to calculate 

dynamic feature at frame 𝑡. Choosing 𝑛 = 1, which is a 3-frame window for calculating 

velocity and a 5-frame window for calculating acceleration at frame 𝑡, we have 

Δ𝑐𝑡 = − 0.5𝑐𝑡−1 + 0.0𝑐𝑡 + 0.5𝑐𝑡+1  (4.16) 

Δ2𝑐𝑡 = 0.25𝑐𝑡−2 − 0.5𝑐𝑡 + 0.25𝑐𝑡+2 . (4.17) 

For an 𝑛 of 2, which is a 5-frame window for calculating velocity and a 9-frame 

window for calculating acceleration, at frame 𝑡, we have 

Δ𝑐𝑡 = −0.2𝑐𝑡−2 − 0.1𝑐𝑡−1 + 0.0𝑐𝑡 + 0.1𝑐𝑡+1 + 0.2𝑐𝑡+2 (4.18) 

Δ2𝑐𝑡 = 0.04𝑐𝑡−4 + 0.04𝑐𝑡−3 + 0.01𝑐𝑡−2 − 0.04𝑐𝑡−1 − 0.1𝑐𝑡 −

0.04𝑐𝑡+1 + 0.01𝑐𝑡+2 + 0.04𝑐𝑡+3 + 0.04𝑐𝑡+4 . (4.19) 

This type of window is denoted as W1_3_5 (window type 1, 3 points for velocity, 

5 points for acceleration) and W1_5_9 (window type 1, 5 points for velocity, 9 points for 

acceleration) 

Method #2: Analytic solution for the velocity and acceleration coefficients from 

the first and second order regression analysis (HTS method). 

Theoretically, the analytic solution of acceleration coefficients should be 

estimated from a second order polynomial rather than applying the linear regression to 
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the delta/velocity coefficients. The HMM based speech synthesis system HTS uses the 

analytic solution to calculate dynamic coefficients as follows: 

Δ𝑐𝑡 = 
∑ 𝜃𝑐𝑡+𝜃

𝑛
𝜃=−𝑛

∑ 𝜃2𝑛
𝜃=−𝑛

 (4.20) 

Δ2𝑐𝑡 = 2
∑ 𝜃2𝑐𝑡+𝜃− 

1

𝑁
(∑ 𝜃2𝑛

𝜃=−𝑛 )(∑ 𝑐𝑡+𝜃
𝑛
𝜃=−𝑛 )𝑛

𝜃=−𝑛

∑ 𝜃4𝑛
𝜃=−𝑛 − 

1

𝑁
∑ 𝜃2𝑛

𝜃=−𝑛

, (4.21) 

where 𝑁 = 2𝑛 + 1 is the width of the window used to calculate dynamic features at 

frame 𝑡. For 𝑛 = 1, which is a 3-frame window for calculating both velocity and 

acceleration coefficients, for frame 𝑡, we have 

Δ𝑐𝑡 = − 0.5𝑐𝑡−1 + 0.0𝑐𝑡 + 0.5𝑐𝑡+1 (4.22) 

Δ2𝑐𝑡 = 0.5𝑐𝑡−1 − 𝑐𝑡 + 0.5𝑐𝑡+1 . (4.23) 

For 𝑛 is 2, which is a 5-frame window for calculating velocity acceleration 

coefficients at frame 𝑡, we have 

Δ𝑐𝑡 = −0.2𝑐𝑡−2 − 0.1𝑐𝑡−1 + 0.0𝑐𝑡 + 0.1𝑐𝑡+1 + 0.2𝑐𝑡+2 (4.24) 

Δ2𝑐𝑡 =  0.125𝑐𝑡−2 − 0.0625𝑐𝑡−1 − 0.125𝑐𝑡 − 0.0625𝑐𝑡+1 + 0.125𝑐𝑡+2 . (4.25) 

This type of window is denoted by W2_3_3 (window type 2, 3 points for velocity, 

3 points for acceleration) and W2_5_5 (window type 2, 5 points for velocity, 5 points for 

acceleration) 

In order to compare the two different methods under the same window length for 

both velocity and acceleration, W2_3_5 and W2_5_9 are implemented to match W1_3_5 

and W1_5_9. 
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It should be noted that these two methods use the same computation for 

delta/velocity coefficients, and only differ in terms of the formula used for delta-

delta/acceleration. To analyze the impact of inversion performance as a result of window 

type, the inversion results are compared across the two methods. The average normalized 

RMS error and correlation are given in table 4.3: 

Table 4.3 Inversion results comparison 

 

The inversion performance is better when using the window coefficients 

computed from Method #2. This might suggest that the correct analytic solution is the 

optimal window for inversion.  

From this table, it can also be seen that shorter windows within the same window 

type give better inversion performance. By looking at the recovered trajectory in figure 

4.4, we see empirically that a larger window generates a noisy inversion result, while a 

smaller one gives smoother output. The better performance using a smaller window 

suggests that the feature dynamics are fast enough that the large window is over 

smoothing, therefore inaccurately calculating the second order term. Thus it is not always 

true that a longer dynamic window is capable of capturing longer range correlations 

W1_3_5

W1_5_9

W2_3_5

W2_5_9

W2_3_3

W2_5_5

                       Inversion result

Window type
Average normalized RMS error Average correlation

0.70

0.90

1.09

0.90

1.02

0.90

0.99

0.74

0.67

0.74

0.68

0.74
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between frames and should generate smoother output trajectories. A larger window is 

only theoretically better if the acceleration is not changing very fast.  

 

Figure 4.4: Estimated trajectory for the VT2 articulatory feature of a test utterance: “The 

object of the game was to produce a good time”. The output from window size 3 (red 

line) is smoother than that of window size 5 (blue line) 

4.5.3 Articulatory feature .VS. Direct sensor movement 

The selection of effective articulatory features is an important component of 

acoustic-to-articulator inversion. Although it is common to use direct articulatory sensor 

measurements as feature variables, this approach fails to incorporate important 

physiological information such as palate height and shape and thus is not as 

representative of vocal tract cross section and the associated acoustics. In this experiment, 

we use the HMM inversion system to compare two sets of articulatory parameters. The 

first is the direct sensor position, which is the typical articulatory feature variable used for 

most studies of articulatory kinematics and acoustic-to-articulatory inversion. The second 

is the set of articulator features described previously in Chapter 3. The hypothesis is that 

the proposed articulatory features should give better inversion performance because these 
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features are palate referenced and normalized with respect to the articulatory working 

space, and therefore a better representation of the vocal tract. The quality of the feature 

representation is evaluated quantitatively through measurement of acoustic-to-articulator 

inversion error.  

In this experiment, the HMM inversion system is used to estimate the articulatory 

parameters from the acoustic signal. The experimental set up is the same as previously 

described.  Two sets of articulatory feature vectors are implemented, the first being the 

direct 𝑥 and 𝑦 position values of the designated EMA sensors, and the second being the 

proposed articulatory features in chapter 3, in both cases with their first and second 

derivatives.  

Figure 4.5 illustrates the measured and reconstructed time trajectories of raw 

sensor coordinates and vertical articulatory feature for a test utterance. The vertical 

features are chosen for illustration because these distances between tongue sensors and 

palate surface which best represent the cross section of the vocal tract and lip opening, 

whereas palate reference for horizontal features is likely to have much less impact.  
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Figure 4.4 Measured (blue lines) and reconstructed (red lines) trajectories of the 

direct measures (upper) and articulatory features (lower), in the test sentence “The 

boy was there when the sun rose”. Phone boundaries are shown by vertical bars 



70 
 

Table 4.4 Normalized RMS error and correlation coefficients between acoustic-to-

articulator inversion estimates and actual trajectories. 

 Normalized RMS error Correlation 

 Sensor space AF space Sensor space AF space 

Dorsum 1.20 0.93 0.66 0.72 

Body 1.45 0.92 0.62 0.73 

Tip 1.31 0.98 0.60 0.79 

Lips 1.37 0.97 0.59 0.73 

 

Results indicate that the normalized RMS error is smaller and the correlation 

coefficient is higher for articulatory features compared to raw movement data under the 

same inversion system, suggesting that the proposed palate-referenced features are better 

choices for representing the vocal tract configuration.  

In Chapter 3, the variances of the original and palate-referenced features are 

compared. Figure 3.7 and table 3.3 shows that the vertical variance is significantly 

reduced in the palate-reference feature space, and figure 3.8 shows that the proposed 

features have significantly less overlap between the working spaces, strongly suggesting 

that the new features have better discriminatory representations than direct kinematic 

data. This directly influences the performance of HMM based acoustic-to-articulatory 

inversion due to increased separation between the observation distributions of different 

models, as shown by the decreased inversion error and increased correlation to actual 

feature trajectories. From the inversion results the average decrease in normalized RMS 

error for the vertical dimension is 29% and the increase in correlation is 20%. These 



71 
 

results strongly support the hypothesis that palate-referenced articulatory features are 

significantly more representative of vocal tract structure and acoustic spectral 

characteristics than direct sensor measures. Overall, the palate-referenced features have 

reduced variance and increased separation between vowels spaces and substantially 

lowered inversion error compared to direct sensor measures.  

4.6 Summary 

In this chapter a baseline HMM based inversion system has been built and 

evaluated. Acoustic and articulatory HMMs are trained independently, and articulatory 

parameters are recovered from the concatenated articulatory state sequences derived from 

forced alignment of acoustic model. A maximum likelihood parameter generation 

algorithm is used to produce trajectory output from a sequence of single Gaussian 

distribution. Additionally, two aspects of the system have been investigated for impact on 

inversion system performance: acoustic model complexity and dynamic window effect. 

By increasing the number of mixtures we improve the inversion performance, however, 

we need to monitor the performance across mixtures in order to avoid over fitting. 

Experimental results showed that for our data 7 mixtures gives the best performance in 

terms of average normalized RMS error and correlation. The other factor affecting the 

inversion performance is the selection of dynamic window coefficients. We investigated 

two commonly used windows, and the results show that the short-length 3-frame window 

based on theoretically optimal 1𝑠𝑡 and 2𝑛𝑑 order regression coefficients gives the best 

performance for recovering the slowly changing articulatory trajectory. In addition, the 

inversion performance between direct sensor movement and the palate referenced 
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articulatory features proposed in chapter 3 have been compared. Results show that the 

palate referenced articulatory features have higher inversion accuracy, which supports 

our hypothesis that they better characterize the shape of the vocal tract. 

The inversion model described in this chapter is a speaker dependent model 

requiring kinematic training data for each specific speaker. All experiments use a single 

male subject’s data from EMA-MAE dataset. The next chapter will apply a model based 

speaker adaptation approach to extend this inversion system to work in a speaker 

independent domain.   
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5 Parallel reference speaker weighting for speaker 

independent inversion 

5.1 Introduction 

Most acoustic-to-articulatory inversion methods use parallel acoustic and 

articulatory training data from a single subject to learn the mapping between acoustic and 

articulatory spaces and then perform inversion on the acoustic data of the same subject. 

The mapping from the acoustic to the articulatory space varies across subjects due to 

physiological vocal tract differences, variability in speech production mechanisms, and 

differences in kinematic sensor placement across subjects. Therefore existing approaches 

for inversion are unlikely to work well if articulatory data from subjects are not available, 

as is realistically the case with many possible applications, such as Computer Aided 

Language Learning (CALL) or Computer Aided Pronunciation Training (CAPT) 

systems. An efficient speaker independent acoustic to articulatory inversion procedure 

needs to be developed which can estimate an unknown speaker’s articulatory information 

from models trained using only from his or her acoustic realization.  

There is significant evidence to suggest that multiple articulatory configurations 

can be associated with the same acoustic result (Atal et al., 1978; Lindblom et al., 1977; 

Qin & Carreira-Perpinan, 2007). It is nearly impossible to identify fine differences in 

articulatory configuration from the acoustic signal using existing methods. Within a 

single speaker creating an acoustic-articulator mapping is reasonable, but for multiple 

speakers it is a much more difficult problem. Because the relation between articulation 
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and acoustics is complex and non-linear, the problem cannot be solved with simple 

articulatory space and feature normalization. A method needs to be developed that will 

incorporate multiple acoustic-articulator mappings and create a new mapping that will be 

appropriate for a new speaker without reference kinematic data.  

By using acoustic adaption techniques, the differences in acoustic patterns can be 

identified, and adapted acoustic and kinematic models in parallel can be created, to form 

a new inversion mapping that can estimate articulatory trajectory on new speakers. In this 

chapter a novel speaker independent inversion: parallel reference speaker weighting 

(PRSW) is developed and implemented based on the inversion system described in 

Chapter 4. Speaker dependent models for each subject enrolled in the experiments will be 

learned directly from the matched acoustic-articulatory data. Acoustically adapted models 

for each speaker will be created using the proposed PRSW method, using a target 

speaker’s acoustic adaptation data without any kinematic data to determine PRSW 

weights and constructing a paired articulatory inversion model from the reference 

speakers. Each speaker will thus have measured articulator data as well as both speaker-

dependent inversion model estimates and PRSW adapted kinematic-independent 

inversion model estimates. Direct evaluation of the acoustic-articulator inversion model 

will be done using correlation between actual and estimated articulatory features. The 

PRSW adaptation method will be discussed in 5.2, followed by experiments and results 

analysis in 5.3 and 5.4, respectively, with conclusions in 5.5. 
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5.2 Parallel Reference Speaker Weighting (PRSW) 

As discussed in Chapter 2, Reference Speaker Weighting (RSW) is a rapid 

speaker adaptation approach that creates a new speaker model as a weighted combination 

of reference speakers, learning the appropriate weights from a small amount of adaptation 

data. 

In PRSW, the speaker combination that generates the new speaker in acoustic 

space is assumed to be consistent with those in the articulatory space. The new speaker’s 

articulatory realization can be recovered from the reference speakers’ articulatory model 

by using acoustically derived weights. In the inversion stage, identical weights are used 

in the articulatory space. Let A = {a1, a2, … , aK} be the set of reference speaker 

articulatory super vectors. Then the RSW estimate of the new speaker’s articulatory 

supervector is  

𝐴𝑢𝑛𝑘𝑛𝑜𝑤𝑛  ≈  ∑ 𝑤𝑘𝑎𝑘
𝐾
𝑘=1 = 𝐴𝑊 (5.1) 

𝑊  is the same weight derived from acoustic RSW in equation (2.12). The new speaker’s 

articulatory movement can be estimated from the adapted model by using the maximum 

likelihood parameter generation algorithm described in section 4.3.3. Figure 5.1 

illustrates this method for constructing an acoustic-articulator inversion model using the 

new PRSW approach.  
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Figure 5.1 Diagram of Parallel Reference Speaker Weighting 

This figure illustrates the method of constructing a speaker independent acoustic-

to-articulatory inversion model. Using the multi-speaker articulatory and acoustic data, 

each reference speaker’s parallel acoustic and articulatory HMMs are trained. Then RSW 

is used to adapt a new acoustic model for the unknown speaker. The weights derived 

from acoustic adaptation are combined in the same way in the articulatory space to 

generate the new speaker’s articulatory model.  

In order to evaluate the performance of the proposed PRSW, three different 

models have been implemented as in Figure 5.2.  
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Figure 5.2 Implementation diagram of the three different models 

Specifically, speaker dependent inversion models (SDIM) are trained on 45 

minutes (including isolated words, sentences and paragraphs) of acoustic and parallel 

kinematic articulatory data for each speaker. A universal speaker independent inversion 

model (UIM) is trained on all speakers’ data. The proposed PSRW method has also been 

implemented to get an adapted inversion model for each speaker only using acoustic data.  
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5.3 Experimental set up and evaluation 

5.3.1 Experimental set up 

20 Native American English speakers’ data from the EMA-MAE dataset have 

been used in the following experiments. The baseline is the HMM based inversion system 

described in section 4.3 . A set of experiments has been performed to assess the PRSW 

model results: 

1. A baseline adaption experiment to compare the inversion performance of 

SDIM, UIM and PRSW for each of the 20 speakers. The baseline experiment 

takes all available speakers’ information into account to create a new 

speaker’s inversion model. For each speaker, we excluded its own model from 

the 20 SDIM’s pool and use the remaining 19 as reference speakers to 

estimate weights, then generate an adapted inversion model. The full 45 

minutes of acoustic data for the target speaker is enrolled as adaptation data. 

2. Reference speaker selection experiments to investigate the impact of the 

selection of reference speakers. Weight thresholding and global M-best pre-

selection approaches will be compared and analyzed. 

3. An experiment varying the amount of acoustic adaptation data to investigate 

data requirements of the different models in terms of inversion performance. 

5.3.2 Evaluation 

Normally, both average normalized RMS error and correlation are used to 

evaluate the performance for speaker dependent acoustic-to-articulatory inversion 
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systems. In chapter 4, both of these are used to evaluate baseline inversion system. 

However, for a speaker independent framework, several studies (Ghosh & Narayanan, 

2011; Hueber, Bailly, Badin, & Elisei, 2013) have shown that average normalized RMS 

error is not suitable for evaluating the cross-speaker acoustic-to-articulatory inversion due 

to differences in scaling and dynamic range caused by a lack of kinematic data. Without 

articulatory data for the test speaker the estimated articulatory outputs represent the 

correct movement patterns but not necessarily the new speaker’s articulatory mean and 

variance, which are impacted by both physiological differences and sensor placement 

differences across subjects. Thus the correlation metric, which is a measure of overall 

similarity between the reference and the estimated trajectories, is a more appropriate 

evaluation criterion for quality of cross-speaker inversion results.  

The correlation will be used to evaluate the inversion performance under different 

systems. Specifically, a set of experimental comparisons have been conducted to evaluate 

the proposed PRSW adaptation method: 

1. Comparing the SDIM, UIM and PRSW inversion performance on the baseline 

experiment across 20 native English speakers. The hypothesis is that the 

adapted model should have better inversion output than the universal model 

and very close to the speaker dependent model. 

2. Comparing the SDIM, UIM and PRSW inversion performance by applying 

different selection methods for reference speakers. The hypothesis is that the 

quality and articulatory consistency of the reference speaker set in will have 

impact on the PRSW performance, and thus that further improvement from 

using a reduced set of or relevant reference speakers.  
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3. Comparing the SDIM, UIM and PRSW inversion performance as a function 

of the amount of adaptation acoustic data. The hypothesis is that PRSW, being 

based on a rapid adaptation approach, is able to create accurate models using 

only a small amount of adaptation data. 

5.4 Results and analysis 

5.4.1 Baseline adaption result 

Figure 5.3 shows the inversion performance for all 20 speakers in terms of 

correlation. From the correlation results we see that 13 out of 20 speakers support the 

initial hypothesis (SDIM > PRSW > UIM); however, 7 speakers have results that show a 

different pattern (SDIM > UIM > PRSW), with the PRSW method giving relatively poor 

results.  If closely looking at the correlation, the inversion performance of the speaker 

dependent models varies widely across the 20 speakers (from highest 0.72 to lowest 

0.52). The universal model has a relatively consistent inversion performance for every 

individual speaker (around 0.54).  
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Figure 5.3 Baseline correlation results of the three different models 

Figure 5.4 shows the average normalized RMS error for each speaker. The PRSW 

model always has the highest normalized RMS error.  
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Figure 5.4 Baseline inversion results of three different models (normalized RMS 

error) 

Looking in more detail at the RMS results, Figure 5.5 below illustrates why 

normalized RMS error is not a good measure for evaluating speaker independent 

inversion systems.  
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Figure 5.5 Recovered articulatory feature from the three different models  

This figure shows the true trajectory (blue line) along with the inversion output 

from the SDIM (red line), the UIM (black line), and the PRSW model (green line) for the 

articulatory feature VT8. The average normalized RMS errors are 0.72, 1.25, and 1.32, 

respectively. The correlations are 0.78, 0.60, and 0.73, respectively. Although PRSW has 

the highest normalized RMS error, it is clear, both visually and from the correlation 

result, that it follows the shape of red and blue line much better than the UIM. The PRSW 

results show an offset of about 2.6 mm as observed in this figure. This is caused by 

physical variation between subjects, and there is no way to estimate or compensate for 

the offset without any articulatory information. Comparing figures 5.4 and 5.5 here 

supports the idea that average normalized RMS error is not suitable for evaluating the 

cross-speaker acoustic-to-articulatory inversion, as discussed previously in 5.3.2.  

It should also be noted that correlation is a more meaningful measure with respect 

to most practical applications of acoustic-to-articulatory inversion. For speech 
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recognition systems, articulatory synthesis systems, or pronunciation evaluation systems, 

the overall articulatory pattern is much more meaningful than exact sensor values. In fact, 

the speaker-independent approach shown here, using no kinematic data provides an 

implicit normalizing effect that acts to reduce speaker variance while still accurately 

tracking articulatory patterns, which would in many senses be expected to improve 

usefulness of the articulatory data to the target application. 

5.4.2 Variation across speakers 

From the baseline experiment results, there is a large variation in the original 

speaker dependent inversion performance across the 20 speakers. This variation can be 

further investigated by analyzing the articulatory feature model parameters for each 

speaker. The mapping from acoustic-to-articulatory space is through state alignment, so 

the more consistent the articulatory feature values are for identical phoneme sequences, 

the better the expected performance of the inversion system. The Gaussian variance in the 

articulatory HMM states are a good measure of this consistency.  

The scatter plot in Figure 5.6 shows a linear relationship between the consistency 

of articulatory features and the inversion performance as measured by correlation. In this 

figure, each red dot represents an individual speaker. A higher variance indicates that the 

speaker has a less consistent articulatory pattern, which is correlated with the inversion 

model having less accurate estimates of articulatory feature patterns. Speakers with lower 

variance articulatory models have better performing inversion models.  
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Figure 5.6 Scatter plot of articulatory model variance vs. correlation of speaker 

dependent models for all speakers 

Cross-referencing the results from Figure 5.3 and Figure 5.6 and empirically reviewing 

the reference speaker weights reveals that the speakers with poor PRSW results are those 

whose primary reference speakers (highest weights in Equation 5.1) have high-variance 

speaker dependent models. This leads us to consider limiting the reference speaker set 

might be a way to improve the PRSW model.  

In the next section, two different reference speaker selection strategies will be 

explored: one based on limiting the total number of reference speakers based on acoustic 

similarity (Weight thresholding) and the other based on globally limiting the reference 

speaker set based on speaker dependent inversion performance (M-best pre-selection).  

5.4.3 Selection of reference speakers 

Normally, the quality of an adapted acoustic model is dependent on the selection 

of reference speakers. The influence of selection approaches has been investigated in 
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previous studies for acoustic models (Huang, Chen, & Chang, 2002; Kuhn et al., 2000) 

but not for articulatory models. In this section, two different reference selection strategies 

for the proposed acoustic-to-articulatory inversion system have been implemented and 

analyzed.  

5.4.3.1 Weight thresholding 

Figure 5.7 shows a diagram of the weight thresholding approach, based on 

acoustic model similarity. The RSW weights can be regarded as a similarity 

measurement, so that the best speakers in a nearest neighbor sense can be selected by 

setting a threshold 𝛼 on sorted weights.  
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Figure 5.7 Weight thresholding PRSW 

In order to investigate the effect of different thresholds, the threshold 𝛼 is 

incremented in small steps (0.01), with maximum value of 0.09 to make sure that there is 

at least one speaker in the reference speaker set. Figure 5.8 shows the plot of threshold as 

average performance across 20 speakers. 
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Figure 5.8 Plot of correlation as a function of threshold, for weight thresholding 

PRSW  

This figure shows that the average performance curve is always higher than the 

baseline PRSW results. With the initial threshold of 0.01 the performance is close to that 

of the baseline PRSW. As the threshold increases, the performance continues to improve 

until a threshold of 0.05, and then decreases slowly. The high performance suggests that 

reducing the number of speaker models being combined to create the new test speaker 

has a positive overall impact on articulatory consistency. Although in this case a 

threshold of 0.05 is the best, the optimal weight threshold would vary as a function of the 

original number of references speakers in different datasets. Once a specific reference 
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speaker set is established, the optimal weight threshold can be determined on a set of 

development data and should give consistent results for new unseen speakers. 

Table 5.1 shows the results using a threshold of 0.5 across all 20 speakers. The 

correlation performance shows significant improvement compared to the baseline PRSW 

system for each speaker.  

Table 5.1 Weight thresholding PRSW results for all 20 speakers with the threshold (𝛼 =

0.05) 

 

Correlation M best (weight <0.05)

1 0.50 0.53 0.51 0.55 8

2 0.54 0.67 0.58 0.62 6

3 0.56 0.72 0.56 0.63 6

4 0.57 0.69 0.62 0.63 6

5 0.51 0.59 0.53 0.61 6

6 0.62 0.72 0.56 0.67 7

7 0.57 0.65 0.56 0.63 7

8 0.57 0.65 0.57 0.61 5

9 0.57 0.68 0.55 0.63 6

10 0.55 0.67 0.54 0.62 8

11 0.55 0.72 0.58 0.63 6

12 0.57 0.69 0.63 0.66 6

13 0.50 0.61 0.54 0.61 5

14 0.48 0.55 0.48 0.54 8

15 0.53 0.55 0.53 0.53 7

16 0.48 0.54 0.48 0.51 7

17 0.48 0.53 0.48 0.51 7

18 0.54 0.64 0.54 0.60 8

19 0.54 0.64 0.61 0.62 7

20 0.60 0.65 0.60 0.67 7

Average 0.54 0.63 0.55 0.60 6.65

SDIMSpeaker ID UIM Baseline PRSW
Thresholding
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Overall figure 5.8 and table 5.1 indicate that the adaptation model generated using the 

proposed weight-thresholding selection method achieves better inversion performance for 

unseen speakers compare to the baseline PRSW. 

5.4.3.2 M-best global pre-selection 

In this approach, the M speakers with the best speaker dependent inversion 

performance are selected globally as reference speakers, with the other speakers 

eliminated from consideration. Because of the observed large variance across speakers in 

terms of the quality of speaker dependent results, using inversion performance can be 

regarded as a measure of model consistency. The hypothesis is that the more consistent 

the reference speakers, the higher the upper limit on inversion results of the adapted 

model. Figure 5.9 details the M-best pre-selection approach based on speaker dependent 

inversion performance. 
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Figure 5.9 Diagram of PRSW with M-best pre-selection 

In this global pre-selection method, the core reference speaker set is the same for 

each test speaker, including exactly the M-best reference speakers according to speaker 

dependent model correlation performance. When the test speaker is in the M best list, the 

next best speaker is included instead, so that the reference set is maintained at M 
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consistently across all 20 speakers. This means that the reference speaker sets are not 

fully identical, but always have at least 19 speakers in common. In this experiment, M is 

increased from 1 to 19.  Figure 5.11 shows the plots of the average performance as a 

function of M across 20 speakers.  

 

Figure 5.10 Plot of the inversion correlation results as a function of the number of 

reference speakers in M-best global pre-selection PRSW 

The overall performance curve is above the baseline PRSW for M from 1 to 16. In 

the initial case M=1, a single reference speaker acts as a surrogate model for the target 

speaker. As the number of reference speakers increases, the average performance 

increases until reaching a peak at M=7, then decreases significantly. For this dataset, M = 
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7 results in only speakers having an SDIM correlation greater than 0.67 being selected as 

reference speaker in this case. As with the weight thresholding approach, the optimal 

parameter M is also a function of the original number of speakers, and more importantly 

of the quality of those speaker models as measured by the speaker dependent inversion 

performance.  

Table 5.2 shows the results of the global M-best pre-selection PRSW approach for 

each individual speaker, with M=7. Results show that there is a large variation in the 

performance across 20 speakers, showing improvement over the baseline PRSW model in 

every case. 

Table 5.2 Inversion correlation for each individual speaker using global M-best pre-

selection PRSW with M=7 
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The results show significant improvements compare to the baseline PRSW 

system, but with a large variation in terms of the amount of improvement. This difference 

might cause by the variation in both acoustic and articulatory patterns for each speakers. 

Having a globally reduced speaker set increases the likelihood that there will not be as 

many good matches between the test speaker and the reference speaker set, in contrast to 

the weight thresholded approach where all speakers were initially included.  

Table 5.3 shows the average performance for each of the proposed selection 

methods. Overall, both of these speaker selection approaches showed significant 

1 0.50 0.53 0.51

2 0.54 0.67 0.58

3 0.56 0.72 0.56

4 0.57 0.69 0.62

5 0.51 0.59 0.53

6 0.62 0.72 0.56

7 0.57 0.65 0.56

8 0.57 0.65 0.57

9 0.57 0.68 0.55

10 0.55 0.67 0.54

11 0.55 0.72 0.58

12 0.57 0.69 0.63

13 0.50 0.61 0.54

14 0.48 0.55 0.48

15 0.53 0.55 0.53

16 0.48 0.54 0.48

17 0.48 0.53 0.48

18 0.54 0.64 0.54

19 0.54 0.64 0.61

20 0.60 0.65 0.60

Average 0.54 0.63 0.55

0.62

0.65

0.62

0.61

0.57

0.55

0.54

0.53

0.62

0.64

0.66

0.64

0.63

0.65

0.66

0.56

0.66

0.62

0.64

0.62

0.68

Speaker ID UIM SDIM Baseline PRSW
M-best pre-selection PRSW

M = 7
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improvement compared to the baseline PRSW. Final results show that the M-best pre-

selection PRSW gives the best inversion performance over this dataset. 

Table 5.3 Comparison of inversion correlation performance 

 

By looking at the individual reference speakers selected in both acoustic and 

global selection method, it is interesting to find that there is a large overlap of the 

reference speakers’ selection. The accuracy of the adapted model depends both on the 

similarity in the acoustic space and on the consistency of reference speakers articulatory 

patterns, but the latter is especially important. These two factors combined together affect 

the performance of adapted model. The results shown here strongly indicate that one of 

the biggest factors in high quality speaker independent kinematic-free acoustic-to-

articulatory inversion is a diverse set of reference speakers with consistent articulatory 

patterns. 

5.4.4 Quantity of adaptation data  

The PRSW experiments in the previous sections use the full set data from the 

target speaker to do adaptation, including 198 utterances representing approximately 28 

minutes of speaking time. Normally RSW performs effectively when the amount of 

adaptation data is limited. One question is whether PRSW still has this property under 

our proposed inversion framework, and how much adaptation data is sufficient enough to 

Correlation

SDIM 0.63

M-best pre-selection PRSW (M=7) 0.62

Weight thresholding PRSW (α = 0.05) 0.60

Baseline PRSW 0.55

UIM 0.54
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obtain a good adapted articulatory model. In this section, the impact of amount of 

adaption data on the inversion performance is investigated. In the following experiments, 

the utterances set has been divided into 10 subsets. Table 5.4 shows the number of 

utterances in each subset. 

Table 5.4 Number of utterances in adaptation subset 

 

 

Figure 5.11 Inversion performance .vs. total quantity of adaptation data. (Each 

subset represents approximately 3 additional minutes of data) 

Figure 5.11 shows the inversion performance versus the quantity of adaptation 

data for one speaker. The proposed PRSW method clearly shows a ‘rapid’ adaptation 

property compare to the full size of acoustic adaptation data. PRSW based on the 

Adaptation Subset 1 2 3 4 5 6 7 8 9 10

Number of utterance 20 40 60 80 100 120 140 160 180 198
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reference speaker selection methods each converge at about 60 utterances while the 

baseline PRSW performance converges at 140 utterances. This can also be explained in 

relationship to the number of reference speakers used in each of the adaptation methods. 

In the baseline PRSW, 19 speakers are enrolled as reference speakers, thus more 

adaptation data is needed for the target speaker to estimate the ML weights. But the 

reference selection methods decrease the amount of data needed for adaptation through 

compacting the size of reference speaker set. 

This experiment has also been implemented for all 20 speakers individually. 

Results show the same rapid adaption property with slightly different converge points for 

each speaker, ranging from 20 to 80 utterances.  

5.5 Summary 

This chapter has presented a speaker independent acoustic-to-articulatory 

inversion system. A rapid speaker adaption approach, RSW, has been extended into the 

proposed PRSW framework in order to adapt the articulatory model from the acoustic 

space. The overall correlation between the true and estimated trajectories has been used 

to evaluate this system. In the initial baseline experiments, 13 out of 20 speakers’ 

inversion results show that the adapted model using PRSW is better than the speaker 

independent model and very close to the speaker dependent model. Using the relationship 

between consistency of articulatory models and speaker dependent inversion 

performance, we investigate two new reference speaker pre-selection methods based on 

PRSW. Specifically, these methods include one based on thresholding the number of 

reference speakers based on acoustic model similarity, and another that is based on 
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reducing the overall reference speaker set using speaker dependent inversion 

performance. Experimental results show that both of these selection methods work better 

than the baseline system, with significant improvements compared to the speaker 

independent model for each speaker. This indicates that the proposed PRSW is able to 

adapt a good articulatory model for the target speaker without any kinematic data as long 

as the reference speaker set is carefully selected for acoustic and articulatory consistency. 

In addition, the impact of the amount of adaptation data on the inversion performance 

was investigated. The results show that the proposed PRSW method still preserves the 

rapid adaptation property in which the inversion performance converges with a small 

amount of adaptation data. Given a strong reference speaker set, the proposed PRSW 

adaptation is an effective approach for the speaker independent acoustic-to-articulatory 

inversion system even in the absence of kinematic training data.  
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6 Conclusions and future work 

6.1 Contributions 

Acoustic-to-articulator inversion, the estimation of articulatory trajectories from 

an acoustic signal, is an important problem with applications to a wide variety of speech 

processing technologies It is also a challenging problem due to the complexity of 

articulation patterns and significant inter-speaker differences. This is even more difficult 

when applied to speakers without kinematic training data.  

The focus of this dissertation is solving the problem of acoustic-to-articulatory 

inversion when there is no kinematic data available. In order to achieve this goal, I have 

proposed and implemented a robust normalized articulatory space, a set of palate 

referenced articulatory features to model the vocal tract structure, and a novel speaker 

independent inversion system PRSW. To do this, existing model based speaker adaption 

methods used for speech recognition have been extended into the articulatory space. 

Specifically, a reference speaker weighting (RSW) approach has been utilized to identify 

differences in acoustic patterns and create adapted acoustic and articulatory models in 

parallel. This creates a new inversion mapping that can estimate articulatory trajectories 

on new speakers for whom there is limited acoustic adaptation data and no kinematic 

data. This study has achieved the following objectives: 

1. The Marquette EMA-MAE corpus, a bilingual synchronized acoustic and 

kinematic data of 40 speakers, has been collected and used throughout the 
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dissertation. This dataset has been publically released to the research 

community for future research work in this area. 

2. In chapter 3, a new articulatory space calibration method was introduced that 

includes head correction, bite plate calibration and palate surface estimation 

for the EMA-MAE corpus. The purpose of this calibration process is to 

transform the dataset into a meaningful anatomically referenced space, a 

normalized space that minimizes the difference across speakers. 

3. Based on the new articulatory space and with the purpose of acoustic-to-

articulatory inversion, a set of palate referenced articulatory features from 

EMA direct position measurements based on the vocal tract representation of 

Maeda’s model is proposed. Direct working space comparison showed that 

the proposed articulatory features have smaller variance for the same vowel 

and more discrimination ability for different vowels within the same speaker. 

The proposed articulatory features have been evaluated using the baseline 

inversion system. The 29% average decrease in normalized RMS error and the 

20% increase in correlation, compared to direct EMA sensor positions, 

strongly support the hypothesis that palate-reference articulatory features are 

significantly more representative of vocal tract structure and acoustic spectral 

characteristics.  

4. The most important contribution is the method for speaker independent 

acoustic-to-articulatory inversion. The proposed Parallel Reference Speaker 

Weighting (PRSW) HMM-inversion system which can adapt to new speakers 

without any kinematic data has been implemented and tested. By adapting in 
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acoustic space, an adapted parallel articulatory model can be estimated to 

perform the inversion. Initial PRSW results on the EMA-MAE dataset, using 

a set of 19 reference speakers, produced an inversion accuracy close to that of 

the speaker dependent system for 13 out 20 speakers, By analyzing the 

inconsistency of inversion performance across speakers, we found that the 

accuracy of the adapted kinematic-independent models was related to the 

reference speaker basis set. This finding led me to investigate and implement 

two reference speaker selections approaches: one based on limiting the 

reference speakers individually based on acoustic similarity and the other 

based on globally limiting the total reference speaker set based on speaker 

dependent inversion performance. Experimental results show that both 

reference selection approaches obtained improvement compare to the baseline 

PRSW adapted model. The impact of the quantity of adaptation data on 

inversion performance was also investigated. Results show that the proposed 

PRSW is able to adapt a good articulatory model with relatively small amount 

of acoustic adaptation data. This suggests that adaptation for articulatory 

models requires somewhat more acoustic data compared to acoustic models 

due to the larger variation in articulatory space.  

Overall, this study confirmed that articulatory patterns vary across speakers in 

consistent ways, ways that can be learned from associated reference speakers without 

needing kinematic data for each test speaker. The PRSW approach offers good speaker 

independent inversion performance without kinematic training data, but requires a set of 

reference speakers with consistent acoustic-articulatory patterns.  
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6.2 Future research 

The proposed PRSW speaker independent acoustic-to-articulatory inversion has 

been implemented and evaluated across 20 native speakers. Based on the findings of this 

study there are several important directions for future research:  

The EMA-MAE Marquette corpus includes another 20 Mandarin accented 

English speakers in addition to the 20 native speakers. It is important to investigate the 

difference in PRSW inversion performance between native and Mandarin accented 

speakers in the normalized working space with the proposed palate referenced 

articulatory. This comparison will provide direction on how to analyze non-native 

pronunciation patterns in articulatory space, and provide detailed corrective feedback to 

language learners.  

Comparison of inversion performance within and across native and Mandarin 

accented speaker groups will also provide a good analyses across these two groups that 

will help characterize acoustic-articulatory relationships between mandarin and English 

speakers. Specifically, differences associated with vowels, consonant clusters, and 

contrastive stress variations should be analyzed and compared.  

The PRSW solution may also be beneficial to the future development of CALL 

and CAPT systems, enabling them to provide specific corrective feedback mechanisms 

through direct assessment of articulatory movement by applying acoustic-to-articulatory 

inversion without the need for collecting kinematic data. 
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6.3 Conclusions 

This dissertation introduces a novel speaker adaptation approach called Parallel 

Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory 

Hidden Markov Models. This approach uses a robust normalized articulatory space and 

palate referenced articulatory features combined with speaker-weighted adaptation to 

form an inversion mapping for new speakers to accurately estimate articulatory 

trajectories where there is no kinematic data. The proposed PRSW method is evaluated 

on the newly collected Marquette EMA-MAE corpus using 20 native English speakers. 

Cross-speaker inversion results show that given a good selection of reference speakers 

with consistent acoustic and articulatory patterns, the PRSW approach gives good 

speaker independent inversion performance, close to that of a  speaker dependent system, 

without the need for kinematic training data.   
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