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ABSTRACT

This paper is but a first step toward a fast, robust, nonarithmetic filtering theory. The following will assume the sampled
‘sequence is from a finite TOS (totally ordered set) S so that any subset (window) of sequence values may be ordered. In
addition we will assume the existance of a distance function (metric) on S. This distance function may be as simple as
counting but all results presented hold for any TOS with any distance function. In addition a median type operdtor will be
defined that always has as output an element in S, unlike the usual median operator.

The restriction to these operators will gaurentee that all results are exact, i.e. there is no quantization error introduced by
the filter after sampling, for example there is no roundoff error, and no overflow. This is a direct result of the fact that no
arithmetic operations are used. In addition there are no assumptions on the sampling interval or amplitude quantization
interval. Therefore the results hold for nonuniform sampling and quantization.

Frequency based filtering is not the goal of this paper, although the real valued filters on which this paper is based have
been applied to the robust detection of an instantaneous change in frequency and could be extended to frequency based
communication systems in the future. It is assumed the signal and noise are "pulse based,” i.e. they are.pulses (not necessarily
rectangular) with the delineating factor as to whether they are information or noise the "width" of the pulse. In addition it will

- be shown that corruption due to the smoothing of edges in a PICO signal may also be eliminated.

Implementations will be discussed. It will be shown that implementation involves only a two layer NAND/NOR for
- ordering and range estimations, and the assumption of counting. Operation counts will be disscussed.
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A PERATIONS, AND DEFINITION

The signal to be considered is {x, 1 1 @ finite length sequence of samples from an arbitrary set with unspecified (not
necessarily uniform) sampling. Filters for pulse width filtering, impulse rejection, and edge enhancement will be examined. It

is usually assumed that the range of values is {0,1}® (i.e. the range to be register contents), and that these are sampled signals
stored in memory in integer form, but the following results will also hold on sets that may have been quantized or sampled on
irregular intervals. It will be shown that the minimal structure needed is a totally orded set with a distance (metric) and a
suitably defined median operation.

It is assumed all inputs are sequences of finite Iéngtb, bounded on both ends by a constant segment [x, and x; repeated N

times], where 2N+1 is the assumed length of each window.

The operations allowed will be the ordering of a finite set of values, calculating the distance from one value to another,
and taking the median (to be defined latter, but different than the usual median) of a set of values. It is noted that in the case
of an even number of values, in statistics the median is usually defined to be the average of the two central ordered values.
Therefore our median needs to be somewhat similar or reduce to this value when the value exist, i.e. is a value in S. Example-
median of three and six does not exist in integer arithmetic, in statistics it would be 4 1/2 but by our definition, if S is the set
of integers, the median will be 4, the next lowest integer.

Let S be the set of values from which the sequence values are selected. Then a TOS is defined as follows. A relation R
and a set S are called a POS (partially ordered set), when R is

(1) reflexive, i.e. xRx forall xin S

(ii) transitive, i.e. xRy & yRz => xRz

(iii) antisymmetric, i.e. xRy & yRx => x=y
The set S is totally ordered if for every x,y in S, either xRy or yRx, henceforth we will assume R is represented by <.

In general, a metric it is a function d from SxS to the nonnegative reals which has the following properties:

(@) dix,y)2 0,

(i) d(x,y)=0 <=> x=y

(iii) d(x,y)=d(y,x)

(iv) d(x,z) <d(x,y)+d(y,z).
Two obvious metrics come to mind. For a finite set one could use the counting metric, i.e. d(x,y) = one more than the number
of values between x and y, exclusive. This would only assume the ability to increment. A second metric one might use would
be the usual absolute value of the difference (LI norm) if real values are allotted to the values in S.

The range of a set A, R, =MAX{d(a,b), for ab in A). If x is any real number we will let Ix] = MAX { j1jis an integer
and j< x }. A constant region in {x} is any L consecutive values with the same amplitude, if L>N+1. If X,y are elements of
our totally ordered set S and x<y then MEDq (x,y) = MAX {clcisin S and d(x,c) <d(y,c)}. Therefore if § = { 0,1,2,5,11}, the
MED¢{0,2} =1, and MED{0,5} = 1.
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The above definition is fine for the MED of two values. But it must be extended to include the median of a set of more
than 2 values, First consider a window length three, the median of 3 values would be the repeated value (if any) and the
centrally ordered value if none are repeated. Therefore the definition for more than two values must contain the case of
repeated values. There is the additional complication in that the median of a set with an even number of values may not
necessarily be a value in the window. If there is an odd number of values in the set, simply order the values (where the
ordering may include equality) and take the centrally ordered value. But if there is an even number of values, order the set of
values, find the two centrally ordered values, and then take the MED of those two values as in the previous definition,
Therefore we have the following definition for the median of a set of N values,

Def: Let A be aset of N values from a TOS, S, that may include repetitions, i.e.
A= (X}, N and X S Sk

If N is 0dd, MED(A) = X, .

If N is even MED(A) = MEDS()L(NQ), X((N:‘Z}H))'

For example, assume S = {1, 2, 5/2,p, 10, 28}, then if (1) A= (2,2, 10}, MED(A)=2,@ A = (2, 2, 10, 28}, MED(A) =
MED(2, 10) = 5/2, if the distance is a simple counter, but if the distance function is the absolute difference the the output will
be p.

Therefore, if we are assuming register/integer arithmetic with constant quantization intervals, if both values are even or
odd the result is as usual, but if one is even and one is odd then there is one bit of resolution loss and this must be taken into
account in all the proofs. The median will be defined so that in the above situation the median of an odd and even is the
median of the original even value and the even value resulting from setting the least significant bit to 0 in the odd number.
But remember we do not want the integer arithmetic to drive our work, we want the integer arithmetic to be an example that
our work is valid on,

The FatBear filter, which is the main thrust of this paper, is now defined by the following output for each of the
overlapping windows of length 2N+1,
Y= FB I{)(i-n’xi-m]’“"xiﬂl}]
=MED { x | x=MED A where A is in the class of subsets of {Xi-n'xi-n+1 woeiXipn ) With N+1
values and with minimum range}.
The FatBear filter is an extension of the WMMR filter (1,2,3,4,5,6,7,8] and will be the only filter this paper is concerned
with. The WMMR filters have similar properties when applied to real valued sequences, but use arithmetic operations,
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3. RESULTS
The first five lemmas in this section desctibe how the Fat Bear filter eliminates impulses. Then techniques are described

for using these results for low, high, and band pass filtering of pulse width signals. Theorems one and two then describe how
the FatBear filter enhances certain corupted edges and put upper bounds on the number of filterings needed.

- Lemma 1: Constant regions are fixed points (unchanged) upon filtering.

Probf: If a filter is centered on a point x in a constant region, then there is a unigue set X of at least N+1 points in the window
with range 0. The median of any subset of X with N+1 values is x and therefore the median of this resultant set of values is x.

~ Definition: If LN, a burst of noise is a set of L consecutive values preceeded by and followed by constant regions each with
- constant regions having the same amplitude and the burst containing different values.

. Lemma2:A burst of noise is totally eliminated upon one pass of the filter.

“ Proof: Assume the window is centered on a value in the burst of noise. Then there are at least N+1 values in the window from
the constant regions and therefore the central value is replaced by the value of the constant region.

Definition: {x;} is alternating if the value of X is A for i even and B for i odd, A,,B.

Lemma 3: An alternating sequcﬁce is a fixed point (cycle of length 2) upon filtering with a window width 2N+1 with N even
(odd).

Proof: Note that each window contains N+1 values equivalent to the central value if N is even and N+1 identical values
different than the central value if N is odd.

Definition: A corrupted edge is two constant regions of different amplitudes seperated by L values, L € N, with at least one of
- the values distinct from the two constaat regions.

Definition: A perfect edge may be of two types:

Type 1: Two adjoining constant regions with distinct amplitudes.

Type 2: Two constant regions with distinct amplitudes, seperated by a single point equidistance from each of the two
distinct constant values and the median of the two constant values.

Lemma 4. Perfect edges are fixed points vpon filtering.
Proof: Type 1 is obvious by Lemma 1. For a Type 2 we need only consider when the window is centered at the point between

the two constant regions. But when centered at this point there are two distinct sets with the same minimum range. The
median of each is the respective constant region and the median of the two constant values is the central point in the window.
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Lemma 5: Due to the symmetry of the filter we may filter from the left to the right or from the right to the left with the same
results.

Proof: Let X(n) be the windowed values of the sequence to be filtered. If we apply a filter W to the sequence X(n), from the
left we can express the output as:
FB[ x

(- N x(ﬂU-NH)’ ............ (ngy » Xng +N -1 x(nD+N)]

and the output of the sequence when we apply the filter from the right is:

FB[ x(n0+N), x(nﬂ ANy ,x(no) s errrreeey x[ng—NH)’ x(no_N}]

where n,, is the center of the window. Since the first step in the filtering process is the ordering of the windowed values and

no spatial information is used in the filtering process, the two outputs are the same. Hence, the output is independent of the
direction of motion of the window.

The above lemma describes how one would filter assuming the uncorrupted signal is PICO and the noise is a pulse width
other than the PICO signal. The following three situations detail how one might construct low, high, and band pass filters:
Low Pass - Assume the signal is PICO with the constant segments of minimum length M and the noise to be a pulse of width
K < M. Then a FatBear filter of width 2N+1 with K <N+I< M would be used. The noise is totally eliminated if it is further
than N samples from an edge. If it is closer to an edge, then the edge is corrupted and the following theorems apply. In all of
this the following analogy applies and links the pulse domain to the frequency domain: A faster sampling rate may separaic
the frequency (pulse widths) delineating the noncorrupted signal and noise. High Pass - Assume the signal is PICO with
maximum constant intervals of length M and noise in the form of pulses of length K > M. Then filtering with a window 2N+1
where M < N+1 < K will remove the signal and leave the noise. Now the noise may be "subtracted" from the original signal.
This method may introduce arithmetic errors, and modifications to avoid this are an active area of research. Band Pass -
Assume the signal is PICO with constant regions of variable length M where for every M, and M, such that M; < M < M.
If the noise is of pulse width greater than M; or less than M, the modifications of the above will separate the signal from
noise with errors steming from the edges and possibly subtraction.

Since this paper is to focus on errorless signal processing, only low pass filters will be of concern from this point on.

Definition: A™ means the value A repeated n times.

Definition: If x,y are in the totally ordered set X and x<y but x=y, then we say x<y.

Since the effect of a burst of noise "close" to an edge is not necessarily eliminated by the above low, high, and band pass
techniques, let us now consider the effect of such noise in more detail. The signal of interest is two constant regions of length
2N+1 or greater and a burst of noise of length N or less that occurs within N values of one constant region. Let us assume
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there are | values separating the burst of noise from the edge. The effect is the same as if the closest N-1 values to the edge
were perturbed by noise, since the first 1 values of the burst are perfectly restored by the filter on the first pass. Therefore, it is
only necessary to consider the effect of a burst of noise imbedded in a constant region (as above) and the effect of the burst of
noise at the edge between two constant regions (as below), assuming the signal is sampled fast enough to seperate burst withs
of noise from those of the signal.

Theorem 1: Consider an edge of the type AN, {x;), | BN*!, where A<x;<x,....<x; <B, L <N. Convergence to a fixed poiat
is gaurenteed in at most 3 passes.

- Proof:’
‘Consider L=1, then if it is a type 2 fixed point we are done. If not, then the value is not the median or is closer to one or the
other constant region. In either case it is replaced upon one pass, Consider 1 <L < N and by Lemma 5 assume A<B. Note that

the number of values in {xi} 1L is at most N=2'IN/2l if N is even and N=2IN/2k-1 if N is odd, and that convergence will be
slowest if all N values X; are such that MAXl{d(A,xi)} < (1/2)d(A,B) ot if all N values X, are such that MAXl d(B,xi) <(1/2)
d(A,B). WLOG we consider the case d(A,xi)<(112)d(A,B), for every i. Now we note that when the window is centered on x,,
1<i<I(N-1)/2l, the output will be A since when the window is centered on the first IN/2| values X; , the minimum range set will
 bave at least N+1-i values A in the set, therefore the output is A. On each pass another IN/2| x; will be replaced by A,
therefore it will take at most 3 passes.

 The inequalities allowed us to ignore ties, i.e. when we allow equalities there will be more sets with minimum range.
Therefore the above theorem is weak and must be expanded to include equality. The case where more than one point in x,
(the corrupted edge) are equal distance from A and B and are also the MED(A,B), is left to another paper since this case has
very low probability of occurance. If N is odd with N-1/2 values between A and MED (A,B) and N-1/2 values between B and
'MED(A,B) and one and only one point in {x;} is equal distance from A and B and is the MED(A,B) then that value is the
central output upon first pass of the FatBear filter and fixed (does not vary) upon susequent passes. In most other cases the
convergence is to a perfect edge. Next we consider the case of when A<xl,Sx2,...<MED(A,B)<x-,...£xL<B and note the
convergence will be the slowest if all values X; are strictly less than of greater than MED(A,B). Therefore the next theorem
considers only this case.

Theorem 2: Assume a corrupted edge of the form AN*l<x,Sx25...SxL<MED(A,B), BN*1 1SIaN, then the corrupted edge

converges to AN BN i ¢ most IN+1)/214+2 passes.

. Proof: Worst case (slowest convergence), Assume L=N and X,=x;. When the window is centered at X the following N sets
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have minimum range,
(0 {AMx #}, o<iaN-1
Therefore the output is the calcnlated median of A and X;-
When centered at x, there are N-1 sets with minimpm range, they are
G (AN M} I<ieNGL,
The median of each of these sets is A, x;, or MED(Ax, ), depending upon which is the most numerous in the set, or in the
case of an equal number of each the output is MED(A,x,) and may be distinct from A and X;. In () we note the output wil
includé an equal number of A and x, ( and possibly one value MED(A x,)), the median of which is MED(A,x,). But in (44)
- there will be fewer sets with output A than with x, and therefore the median is x,. Obviously this extends to the other %X
- therefore after one pass the edge has the form

AN MED(A X)), x, 11, BN#1,
Now we note that at the next pass the value MED(A,x,) is replaced by A and X, is replaced by a value < MED(A,xl). This
will continue untill [IN+-1)/2] values X; are set to zero, then it will take only one pass to set the rest of the X; to zero, At that
point one pass will reduce the resulting signal to the desired fixed point. Therefore it will take at most I(N+1)/2! + 2 passes to
converge to a perfect edge.

Since the above theorem is rather complex an example is now presented illustrating the result for N even or odd. Let the
window size be 7, and let the number of values comptising the corrupted edge of the signal be equal to the maximum number
alllowed, N, or 3 in this case. Also, let the values comptising the corrupted edge all be equal.

Let the sample space be all of the values available in an 8-bit register (0,1,...,255). Now, if N=3, let the data samples be :
A=0, B=255, x=100. So the data appears as: ...,0,0,0,0,100,100,100,255,255,255,255,...

For the first pass of the filter:
Datain: ..,0,0,0,0,100,100,100,255,255,255,255...
Data out: ...,0,0,0,0,50,75,100,255,255,255,255...
Now, for the second pass:
~ Datain: ...0,0,0,0,50,75,100,255,255,255,255...
Data out: ...,0,0,0,0,0,25,62,255,255,255,255...
The results after a third pass will be:
Datain: ...,0,0,0,0,0,25,62,255,255,255,255...
Data out: ...,0,0,0,0,0,0,12,255,255,255,255...

Likewise, after a fourth pass the output is:
Data in: ...0,0,0,0,0,0,12,255,255,255,255...
Data out: ...0,0,0,0,0,0,0,255,255,255,255...
It took four passes through the filter to eliminate the corrupted edge when N=3. Therefore, as a worst case scenario, if there
_are N bits of data comprising a corrupted edge, it will take at most I(N+1)/2l + 2 passes to achieve the desired resulis.
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If N=4, using data similar to that of the previous example, and using the same technigues as before the results after the

first pass are:

Data in: ...0,0,0,0,100,100,100,100,255,255,255,255...
 Data out: .-.,0,0,0,0,50,100,100,100,255,255,255,255...

After a second pass:

Data in: ....0,0,0,0,50,100,100,100,255,255,255,255...

Data out: ....0,0.0,0,0,50,100,100,255,255,255.255...
After a third pass:
Datain: ...,0,0,0,0,0,50,100,100,255,255,255,255...
" Data out: ....,0,0,0,0,0,0,25,50,255,255,255,255...
" After'a fourth pass:
Data in: ....0,0,0,0,0,0,25,50,255,255,255,255...
Data out: ...,0,0,0,0,0,0,0,255,255,255,255...

So again, it takes {(N+1)/2] + 2 passes to eliminate the corrupted edge.

4. Implementation

‘Operations required for a single filter output at point p:

1) Select window of width 2N+1 (centered on p), and order those values using standard (stack filter) techniques.

2) Break the main window into subwindows, of width N+1, and find the range R; of each subwindow.

CThere will be a total of N+1 subwindows)
3) Select the window(s) with minimum range.

4) Output at p is the median of the selected window, if unique. If more than one, take the medlan of the set of medians of all

of minimum range windows.
S;éck filtering terminology:
'L =Numberof grey levels possible

bm=1 Xp>=m
: 0, Xp< m

(This corresponds to the binary value at the mth row of column n in the matrix below.)

*  =Boolean AND
= Boolean OR
~ = Boolean NOT

or
L 00 0 O0..0 by, bar b3p ba
4 01 0 0..0 b4 byg b3g bgq
361 01..0 bj3 boz b3z by3

. BNL.

. bN4
- bN3
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2 010 1..1 big by b33 bgy .. N2
10 1..1 bip b1 b3 by - by

X1 Xg X3 Xg... XN X; X2 X3 X4 .. XN
Value: 1 4 0 3.2

1) Order the values in the main window:
The use of a stack filter for crdering of data values is well documented.

B 2 ) Range of a sequence of N values:
There are two (logically equivalent) approaches:

DRange= X (~byp by oban...bym) T Oy ~byebap. by 1.
* Algebraic sum over L of all terms with 1 < # negated components < N

-To find number of terms, use binomial distribution: (N R) =N/ (N-R}!R!
Total termas per row: (N P+ (N 2) +ont (N N-l) Number of rows =L

~ex. N=5, (5 1)4+(5 2)+(5 3)+(54) =20 product terms (of N And’s) per row

2 Range =3, ~ ®1*by5 by ONm T by ~boy® ~b3py--~bpm)
Algebraic sum over L of all terms which are not all 0’s and not all 1’s

TOTAL No. of terms: 2 per row, each of N And’s. No. of Rows=L
We can see that the second approach is less complex by a full order of magnitude in the example for N=5. In general, for
all N>2, the second approach is significantly improved. This expression for product terms applies to the range over any

number of values; the only thing which changes is the number of AND ’s in each product term, which is equal to the number
of values being ranged, The expression for generation of a range over the generic values (- XN+i - Xj) is as follows:

2 ~Gi V44 2)m PN+ T BB+ 1)m" D2y ~D(Ni)m)

With a total window size of 2N+1, the requirements to find all the subwindow ranges 1s as follows, assuming a parallel
unplementauon of all row operations:

TOTAL = (N+1) steps, with L parallel, 2 product-term computations per step
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3) Find the minimum range(s):

If we set up the (N+1) resulting range values into a stack configuration like that used for the original data (this makes a
parallel implementation over the rows much simpler), a boolean operation for finding the minimum is just the algebraic sum
of all the row vectors which are all 1’s. )

~ MIN = I (by5byinb3py - DN+ 1y

- In addition, we can see which of the values are minimum(there may be several groups with that value) by examining the
row vector at level (MIN+1) of the stack, since only minimum values will be take on binary value 0 at that level.

4) Find the median of the set(s) with minimum value range(s):

, The output of this step is the final output in the case where there is only a single minimum range. We have already
looked at a boolean mechanism for ordering, so all we need to do is pick out the median value:

Situation A: Odd number of values in the window (N is even). For this case, the median is simply the central value in the
window., i.e., MED (X - Xpn:9 = XN/ 46 0 after ordering.

 Situation B: Even number of values in the window. (N is odd)
For this case, we define the median of the window to be the median of the two centrally ordered values in the group. k
Because of our restriction to TOS, the output is the largest member of the TOS which is closer to the smaller of the two
values than it is to the larger one. (If A and B are the two central values, MED(A,B} will be the output.

For the case where the TOS consists of binary 8-bit numbers interpreted to be in integer form, we can implement the
distance between two values with a binary right shift (oo carry), and use that as a counter for incrementing the lower value to
the output. Also, if no shift functions are available, individual incrementing and range operations can be done until the range

‘to the lower value exceeds the range to the higher, followed by a single decrement. Either of these is an exact
implementation of the given definition for median.

4b) Find the median of the outputs from the previous step (necessary only when there are multiple minimum ranges) ~
If several of the windows are found to have minimum range, then we must once again take the median, this time of the set of
medians found in the previous step. To determine the final output, use the same formulas described in the last step for

Situation A (odd number of values in the group) and Situation B (even number of values in the group), as is consistent with
-~ our definition of the median operation for members of the totally ordered set.
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TOTAL required operations:

Recall that the window (of length 2N +1) has already been ordered. Requirements for the ordering of these values have not
beer included here. A step is defined as a serial operation, requiring the previous step to end first. A computation is defined
as a'single two-level gate structure, with binary output. '

v Step 2: TOTAL (N+1) steps, with L parallel computations of 2 product terms each

Step 3: Incremental counter required. Max number of stepsis L.
Each increment is a single product term of (N+1) ANDs.
TOTAL is L steps (max) , with 1 product term each

‘Step 4: Situation A requires but one step. Situation B requires a counter, with an absolute maximum of L/2 iterations of 4
steps (increment, find distance to A, find distance to B, and compare)
TOTAL 2L steps (max), with only L steps requiring a boolean operation, of at most L product terms

 TOTAL REQUIREMENTS (after initial ordering of window):
3L4+N+1 maximum steps - serial operations
L maximimum computations operating in parallel during a given step
Boolean expressions of up to 2L total product terms
Product terms of up to (N+1) individual AND terms.
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