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Acoustic analysis of animal vocalizations has been widely used to identify the 
presence of individual species, classify vocalizations, identify individuals, and determine 
gender. In this work automatic identification of speaker and gender of mice from ultrasonic 
vocalizations and speaker identification of meerkats from their Close calls is investigated. 
Feature extraction was implemented using Greenwood Function Cepstral Coefficients 
(GFCC), designed exclusively for extracting features from animal vocalizations. Mice 
ultrasonic vocalizations were analyzed using Gaussian Mixture Models (GMM) which 
yielded an accuracy of 78.3% for speaker identification and 93.2% for gender 
identification. Meerkat speaker identification with Close calls was implemented using 
Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM), with an accuracy 
of 90.8% and 94.4% respectively. The results obtained shows these methods indicate the 
presence of gender and identity information in vocalizations and support the possibility of 
robust gender identification and individual identification using bioacoustic data sets. 
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Chapter 1 

Introduction 

1.1. Background and motivation 

The research work presented here focuses on analysis of ultrasonic mice 

vocalizations (Zippelius and Schleidt 1956, Sales 1972) and meerkat vocalizations 

(Clutton-Brock, Russell et al. 2005), with an emphasis on individual identity and gender 

classification. Such vocalizations may provide insights for studies of genetic foundations 

of vocal communication in humans (Fischer and Hammerschmidt 2011) and can be used 

for understanding animal behavior. 

Mice are the most commonly used species in biomedical research, neuroscience 

and experimental psychology. The facts that they are inexpensive, easy to handle and have 

98% genetic overlap to human genes makes them ideal candidates for research about 

various human conditions.  

Meerkats are socially obligated, cooperatively breeding, highly territorial mammal 

who live in groups (Clutton-Brock, Russell et al. 2005). Meerkats forage as a group and 

has a highly developed vocal communication system which help them to coordinate group 

movements, identify predators and maintain group cohesion. In this study analysis of Close 

calls are used for gender and individual identification. Close calls are low amplitude 

pulsated calls used for group cohesion and are encoded with gender, individuality and 

group signature (Townsend, Hollén et al. 2010, Townsend, Allen et al. 2012, Mausbach, 

Braga Goncalves et al. 2017).  The study of meerkat vocalizations might help us understand 

the social dynamics and social learning in species that live in small groups. 
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Bioacoustics is a multidisciplinary area of research and requires extensive manual 

labor to perform basic tasks such as detection, segmentation and manual labeling of voice 

activity from long recordings of data from the field. The three main tasks involved in the 

automated analysis of bioacoustic signals are detection, classification, and clustering of 

vocalizations from noisy recordings. Each of these will be described in more detail in 2.3.1. 

Detection is the process of identifying the presence of a particular type of 

vocalization, including start and end points of each vocalization. In contrast, classification 

involved dividing vocalizations into categories such as call type, species, speaker, gender, 

and behavioral patterns Classification and detection algorithms are usually trained using 

supervised learning approaches which builds models out of expertly labeled data. In 

contrast, unsupervised clustering groups vocalizations into categories based on similarity 

with the goal of separating groups and determining the number of such groups present 

based on some threshold criterion, without any predefined categories. Unsupervised 

clustering can also be applied to the individual identification of vocally active species. 

Individual identifying information within vocalizations occurs when 

interindividual variation in a vocalization exceeds intraindividual variation in that 

vocalization, as a result of temporal or spectral variations in vocalizations (Pollard and 

Blumstein 2011). Individual vocal distinctiveness has specific communicative function, 

being essential for species living in larger groups where individual interactions are more 

important for offspring and mate recognition, territorial or coalitional behaviors, signaler 

reliability assessment, and social hierarchies (Pollard and Blumstein 2011). In addition, 

individual vocal distinctiveness is related to non-communicative characteristics as well, 

such as simple physiological differences within the vocal production mechanisms such as 



3 
 

body size and shape. Corresponding to this, speaker specific acoustic features are observed 

in many species, for example individual identity cues have been found in birds (Adi, 

Johnson et al. 2010), mammals (Clemins, Johnson et al. 2005, Volodin, Lapshina et al. 

2011) and marine mammals (Brown, Smaragdis et al. 2010).  

Like individual differences, gender specific differences in animal vocalizations can 

differ in two ways, by acoustic shape or by sequence or timing of delivery (Green 1981). 

Green categorized gender differences in vocalizations as vocalizations which are produced 

by both sexes, but which differ in acoustic shape due to sexual dimorphism, vocalizations 

that are present in one gender but entirely absent in the other and vocalizations which are 

produced by both sexes but have different purposes. Gender identification using 

vocalizations can be seen in many species, for example, gender specific vocalization 

patterns have been found in birds, for example black-capped chickadee songs and oriental 

white stork (Eda-Fujiwara, Yamamoto et al. 2004, Hahn, Krysler et al. 2013) and in 

mammals, baboons and goitred gazelles (Rendall, Owren et al. 2004, Volodin, Lapshina et 

al. 2011).  

In animal bioacoustics, vocalizations can be analyzed by both qualitative and 

quantitative methods (Terry, Peake et al. 2005). In the qualitative approach, visual 

examination of spectrograms or listening in the field is used for identification. A 

spectrogram is a visual representation of energy present in various frequencies of acoustic 

waveform over time. Listening in the field needs extensive experience and is limited to a 

small number of speakers. The most commonly used qualitative method is visual analysis 

of spectrograms, since humans have good skills at pattern recognition. Visual analysis has 

only modest accuracy, and thus quantitative analysis will often follow qualitative analysis.  
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In quantitative analysis, there are several analysis methods, from simple statistical 

methods to automatic methods. Acoustic features used for simple statistical methods 

include initial, final, mean, minimum and maximum frequencies and duration (Shapiro 

2010), which can be directly measured from spectrograms. The features are extracted from 

entire vocalizations and are fed into statistical analysis tools like Discriminant function 

analysis (DFA) (Favaro, Gamba et al. 2015), stepwise discriminant function analysis 

(SDFA) (Hoffmann, Musolf et al. 2012), Principal coordinates analysis (Charrier and 

Harcourt 2006), multivariate analysis of variance (MANOVA ) or analysis of variance 

(ANOVA) (Boughman and Wilkinson 1998). Since these methods use statistics on acoustic 

features taken from individual vocalization frames, the disadvantage of these methods is 

that they fail to incorporate information about the temporal patterns of the vocalizations.  

Another simple method for classification which does incorporate such temporal 

information is template matching, where a target vocalization is selected as a template and 

cross-correlated against test vocalizations. There are two common types of template 

matching techniques, spectrogram cross-correlation (SCC) and matched filtering. 

Spectrogram cross-correlation operates in the spectral domain and matched filtering 

operates in temporal domain. The main disadvantage of template matching is that small 

fluctuations in vocalizations can result in negative correlation. 

Using automatically extracted acoustic features like Greenwood Function Cepstral 

Coefficients (GFCC) (Clemins, Trawicki et al. 2006) and generalized Perceptual Linear 

Prediction coefficients (gPLP) (Clemins and Johnson 2006, Clemins, Trawicki et al. 2006), 

more powerful statistical classification methods are possible. GFCC and gPLPs are 

generalized forms of Mel frequency Cepstral Coefficients (MFCC) (Davis and 
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Mermelstein 1980) and Perceptual Linear Prediction (PLP) (Hermansky 1990) coefficients 

respectively, extracted automatically using frame-based processing of vocalizations.  

MFCCs and PLPs are currently the most widely used feature extraction methods 

for human speech. For the speech recognition task in particular, Hidden Markov Models 

(HMM) using MFCC features, sometimes modeled statistically and sometimes using deep 

neural networks, are the most common approach (Gales and Young 2007). HMMs model 

the temporal variation of the vocalizations as states, and each state has a statistical model 

of acoustic features for the temporal pattern that state represents.  

Many studies have proven successful application of HMMs and GFCCs in 

Bioacoustics (Li, Tao et al. 2007, Ren, Johnson et al. 2009, Adi, Johnson et al. 2010). 

Another method for classification is dynamic time warping (DTW) (Sakoe and Chiba 

1978), a template-based method that uses a dynamic programming algorithm. DTW 

estimates the lowest distance path by aligning test vocalization against a template 

vocalization.  

Many recent developments in human speech analysis have used Deep Neural 

Network (DNN) (Hinton, Deng et al. 2012) based HMMs. The underlying models are 

HMMs for temporal representation just like HMM-GMMs, but state observation 

probabilities are modeled by DNNs instead of GMMs.  

1.2. Contributions and significance 

This study focuses on applying speech processing techniques to bioacoustics, 

specifically individual and gender classification of ultrasonic mice vocalizations and 

speaker identification with meerkat vocalizations. Features of the vocalizations are 



6 
 

extracted using Greenwood Function Cepstral Coefficients, with a classification model 

based on statistical Gaussian Mixture Model discrimination and Hidden Markov Models. 

Although speaker identification and gender identification in mice and speaker 

identification in meerkats using Gaussian Mixture Models and Hidden Markov Models is 

the main contribution of this work, this model can be extended to any species. This work 

may contribute to understand behavior and communication among mice. Since mice serve 

as models for biomedical research, this work may help better understand the evolution of 

vocal communication in humans and other terrestrial mammals. Meerkats are among the 

most social mammals with a rich vocal repertoire, which makes them a model to understand 

the evolution of social behavior, animal communication and cognition. Speaker identity 

and gender identity have been explored in a wide variety of species, and here we extend 

this to ultrasonic mice vocalizations and meerkat vocalizations through a speech 

processing-based approach to bioacoustics classification.  

1.3. Plan of thesis 

The remainder of this thesis is organized as follows: Following this introduction, 

Chapter two gives a brief background description of the technical areas of speech 

processing, feature extraction, machine learning, bioacoustics, individual recognition and 

gender recognition.  Chapter three introduces the GMM based method for identifying 

gender and speaker from ultrasonic vocalizations of mice, the data and experimental 

methodology to be used, and gives a detailed review of the results of the study.  Chapter 

four introduces the GMM and HMM based method for identifying speaker from Close calls 

of meerkats, the data and experimental methodology to be used, and gives a detailed review 
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of the results of the study. Chapter five concludes the thesis and describes contributions 

and future work. 
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Chapter 2 

Background and related works 

2.1. Introduction  

This chapter provides a broad overview of the fields of study connected to this 

research work, including an introduction to topics in speech processing and bioacoustics. 

The specific tasks associated with this work are speaker identification and gender 

identification of animal vocalizations, so a particular focus will be given to these two topics 

and to applications of speech technology to animal vocalizations.  

The first section of the chapter gives an overview of the source filter model of 

speech production and introduces the basic concept of frame-based speech processing and 

feature extraction, with a focus on Mel Cepstral Coefficients. Also, the basic theory of 

Gaussian Mixture Models, commonly used for both gender and speaker identification, is 

explained. 

The second section gives a brief overview of bioacoustics, with a focus on the 

bioacoustic tasks and analysis approaches as well as applications of speech processing 

techniques to problems in animal vocalization analysis and classification. This section 

covers the Greenwood Function Cepstral Coefficients for the feature extraction from 

bioacoustic signals and mentions previous studies of classification using GMMs in 

bioacoustic field.  

The third section deals with the production, usage and vocal repertoire of the mice 

Ultrasonic vocalizations and meerkat vocalizations involved with the present study, with a 

summary and conclusions in the final section. 
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2.2. Overview of speech processing and analysis 

Human speech processing started long before the advent of the computer. As early 

as 1791, there were attempts to implement speech synthesis using a mechanical speech 

synthesizer that could produce vowels and consonants (Benesty, Sondhi et al. 2007). The 

highly acclaimed VOCODER by Dudley in 1930, which can produce arbitrary sentences, 

marked the beginning of modern era of speech processing. Today, speech processing has 

become a part of everyday life, with speech recognition integrated into smartphones and 

many other devices.  Research in speech processing continues in the areas of Automatic 

Speech Recognition (ASR), automatic speaker identification and verification, gender 

identification, speech enhancement, speech coding speech synthesis, language modeling 

and machine translation. The two main areas of speech research covered in this work are 

speaker identification, the determination of which individual is vocalizing, and gender 

identification, the determination of the gender of the individual vocalizing.  

2.2.1. Speech production 

The human speech system consists of phonation organs (lungs and larynx) and 

articulatory organs (lips, tongue and teeth). Forced air from the lungs vibrates the vocal 

folds in the larynx to generate the excitation signal. The vocal tract and articulators filter 

the excitation signal, producing many different types of sounds. Humans produce two basic 

categories of sounds, voiced and unvoiced, depending on the vibratory status of the 

excitation signal. Voiced speech has a nearly periodic input excitation signal and the 

unvoiced signals are produced by a pseudo white noise excitation signal. Production of 

voiced excitation happens when forced air from lungs build up a pressure beneath closed 

vocal folds until the pressure forces these to open. When the pressure beneath the vocal 
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folds returns to normal, the vocal folds close from muscle tension and this cycle repeats. 

This process generates a quasi-periodic airflow which is the excitation signal for voiced 

speech. In contrast, unvoiced sound is produced by forcing air through an open vocal fold, 

as a result the excitation signal generated is a white noise. 

The voiced and unvoiced sounds are modified by the movements of vocal tract and 

articulators, such as the lips and tongue. The basic unit of speech is called a phoneme, 

which can be considered as a unique set of articulatory gestures within the vocal tract and 

excitation characteristics, that together create an acoustic signal that differentiates meaning 

within a language. American English has around 42 phonemes, classified as vowels, 

semivowels, diphthongs and consonants. Commonly used phonetic alphabets include the 

International Phonetic Alphabet (IPA) and the ARPAbet, developed by Advanced 

Research Projects Agency (ARPA) (Deller, Hansen et al. 2000).  

From a speech processing perspective, the overall process of speech production can 

be represented as a source-filter model. A source represented by air flow through vocal 

folds being filtered by the resonances of vocal tract generates the speech signal.  

 
Figure 1: Source filter model of speech production 

Pulse generator 

Noise generator 

Vocal tract filter 
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The mathematical representation of the source filter model for speech production can be 

given as  

 [ ] [ ] [ ],e n h n s n⊗ =   (2.1) 

where the excitation [ ]e n  and filter [ ]h n  are convolved to produce speech signal [ ]s n  . 

2.2.2. Spectral analysis and feature extraction 

Since speech is produced from a time varying vocal tract excited by time varying 

excitation signal, speech is nonstationary by nature. Thus, the spectral properties of speech 

are time varying and short-term processing is used as an analysis tool. In short term 

processing a sliding window approach is used, where each individual window, or frame, is 

assumed to be stationary (Deller, Hansen et al. 2000).  Each frame is a product of shifted 

window [ ]w n   with original speech signal [ ]s n ,  

 [ ; ] [ ] [ ].f n m s n w n m= −    (2.2) 

Speech processing systems for speaker identification and gender identification 

consists of feature extraction, acoustic modeling and statistical classification. Frame sizes 

of 10 – 30 ms are used in human speech processing in order to approximate the stationarity 

for spectral analysis. Features are extracted from each frame and combined to form a 

feature vector. This feature vector is then used as an input to the classification system. 

Although most speech processing systems use spectral domain features, temporal domain 

features such as short-term energy and zero crossing rate can also be useful for some 

applications.  

According to the source filter model, speech is produced by the convolution of an 

excitation signal with the impulse response of the vocal tract. Although direct spectral 
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analysis through methods such as the Fourier Transform provides good information about 

speech characteristics, homomorphic techniques such as cepstral analysis are often used 

for various speech processing techniques because of their ability to separate the 

convolutional mixture of excitation signal and vocal tract response. In the cepstral domain, 

the excitation signal and the vocal tract response are linearly combined and occupy 

different regions of the cepstral domain, making them easy to separate (Deller, Hansen et 

al. 2000).  

Mathematically, the cepstrum of a signal is the inverse Fourier transform of the 

logarithm of the Fourier Transform Magnitude of the signal. This is represented 

mathematically as 

 1( ) ( | ( [ ] |),c n F log F s n−=   (2.3) 

 1( | [ ] |),F log S m−=    (2.4) 

 1) ( | [ ] [ ] |),F log E m H m−=    (2.5) 

 1( | [ ] | | [ ] |),F log E m log H m−= +    (2.6) 

where [ ]s n  is the signal and F  represents the Fourier transform operation. The logarithm 

operation acting on the real, positive Fourier Transform magnitude separates the convolved 

excitation signal and vocal tract response into summed components in the cepstral domain.  

Liftering, defined as splitting different regions of the cepstrum, then separates these 

components. Note that the terms cepstrum and liftering are derived from swapping letters 

in spectrum and filter respectively.  

Feature extraction plays an important part in accurate classification of automatic 

speech processing systems. Feature extraction is the process of estimating a reduced set of 

relevant variables that will be effective for further analysis, modeling, and classification. 
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Although there are many feature extraction methods for speech like Linear Prediction 

Coefficients (LPCs), Perpetual Linear Prediction (PLP) coefficients, and Mel Frequency 

Cepstral Coefficients (MFCCs), MFCCs are the most commonly used feature extraction 

method for speech recognition. MFCCs operate in the cepstral domain, making it easy to 

separate the linear combination of excitation and vocal tract characteristics. MFCCs use a 

nonlinear frequency scale which represents the human auditory system (Huang, Acero et 

al. 2001) which makes them an ideal candidate for speech processing applications. 

A block diagram for calculating MFCCs is given in Figure 2. The speech signal is 

divided into frames generally using a sliding window and the log magnitude spectrum of 

each frame is warped according to the Mel frequency scale. The Discrete Cosine transform 

(similar to the inverse Fourier Transform operation, but with real rather than complex 

coefficients) of the warped frequency log magnitudes yields Mel frequency cepstral 

coefficients. Each step in calculating MFCCs is explained below in detail. 

 

Figure 2: MFCC Block diagram 

�
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The speech signal is divided into frames using a windowing function, typically 

using a hamming window. A window size of 20 – 30ms is used in human speech 

processing, to trade off the typically syllable rate of human speech and the need for larger 

frames for accurate frequency resolution. Choosing the frame length is a tradeoff between 

spectral and temporal resolution, with a lengthy frame yielding better spectral resolution 

but losing the stationarity of the speech signal. A narrow frame gives better temporal 

resolution but poor spectral resolution.  

Following the calculation of the log-magnitude Discrete Fourier Transform (DFT), 

the next step in finding MFCCs is to warp the DFT output to the Mel scale (Stevens and 

Volkmann 1940) using filter bank analysis. The human hearing system is linearly sensitive 

to frequencies below 1000 Hz and logarithmically sensitive to frequencies above it. The 

Mel scale successfully models the non-linearity in human speech perception. Mel scale is 

defined as 

 2595ln(1 ),
700mel

ff = +   (2.7) 

where f  is the frequency in Hz and melf  is the Mel frequency. Mel scale is often calculated 

using a filter bank as shown in Figure 3. 
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Figure 3: Mel Filter Bank 

Generally triangular band pass filters are used with higher number of filters in the 

lower frequency region and lower number of filters in higher frequency region. Other filter 

shapes can be used and are more reflective of the non-linear shape of critical-band filtering 

in the human auditory system, but the simplicity of triangle filters makes them an attractive 

option which is often used in practice. Log spectral energies in each filter are calculated by 

taking the logarithm of sum of coefficients after multiplying each filter with the magnitude 

spectrum of the frame.  

 
1

2

0
[ ] [ | [ ] | [ ]],0

N

m
k

m ln X k H k m M
−

=

Θ = ≤ ≤∑   (2.8) 

where M   is the number of filters and  [ ]MH k  is the filter bank. At lower frequencies the 

filter is narrow and is more sensitive to spectral energy variations. At higher frequencies, 

the filters get wider and less sensitive to spectral energy variations.  These match the 

sensitivity of human hearing. 

The final step in the MFCC calculation is taking the Discrete Cosine Transform 

(DCT) of the log spectral energies of each filter. The DCT acts similarly to the inverse FT 

of the cepstral calculation, but with real coefficients. The  DCT decorrelates the filter bank 
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magnitudes and creates a compact and efficient  Mel cepstral representation (Davis and 

Mermelstein 1980). The DCT is defined as 

 
1

0
[ ] [ ] ( ( 0.5) / ),0 .

M

m
c n m cos n m M n Mπ

−

=

= Θ + ≤ ≤∑   (2.9) 

The time derivatives of MFCCs also provide useful information about trajectories 

of MFCCs over time (Yang, Soong et al. 2007). The dynamic time derivative features taken 

along with the static features MFCC provide better recognition in automatic speech 

analysis. The time derivative can be calculated as 

 1

2

1

( )

2

N

t k t k
k

t N

k

k c c
d

k

+ −
=

=

−
=
∑

∑
  (2.10) 

where td   is a delta coefficient at time t computed in term of the static coefficients t kc −  to 

t kc + . The second derivative, known as a delta-delta coefficient, can be calculated by 

applying a similar computation to delta coefficients. 

Another feature that can be used in speech and speaker recognition problems is 

short term energy. Short term processing of speech can be used to find the short-term 

energy of a speech frame. Since speech is a time varying signal, the energy associated with 

speech is also time varying. Voiced speech will have higher energy compared with 

unvoiced speech, and different phonemes have different average energies. Thus, the short-

term energy can be an important feature to include for analysis and classification. The 

short-term energy of N  length frame ending at time m ,  

 2

1
( ) [ ]

m

n m N
E m S n

= − +

= ∑   (2.11) 
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2.2.3. Acoustic modeling 

Acoustic models are representations constructed from the features extracted from 

speech signals. An automatic speech processing system uses such models for comparison 

of feature vectors and pattern recognition. Template, statistical, and machine learning 

models may all be used for acoustic modeling. Template based models matches selected 

speech templates with test templates and calculates distance between both. Common 

template matching models include Spectrogram Cross Correlation (SCC), Matched 

Filtering and Dynamic Time Warping (DTW). In contrast, statistical methods like Gaussian 

Mixture Models (GMMs) characterize the statistical properties of speech signal. Newer 

state-of-the-art techniques for automatic speech recognition replace statistical GMM 

approaches with deep neural networks (DNNs) that directly estimate posterior probabilities 

of the feature vectors. 

2.2.3.1. Gaussian Mixture Models (GMM) 

In this work speaker and gender models of mice are characterized using Gaussian 

Mixture Models (GMMs). GMMs are widely used in many speech processing applications 

as a statistical model for acoustic features extracted from speech. Advantages of GMMs 

include that they are computationally inexpensive and are highly generalizable. GMMs are 

a linear combination of more than one Gaussian distributions and can model any 

continuous density accurately with sufficient number of mixtures. A GMM is defined for 

a n-dimensional feature vector x as 

 
1

( | ) ( ),
M

i i
i

p x w p xλ
=

=∑   (2.12) 
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where iw  is the weight of thi  Gaussian Mixture. The weights must satisfy the condition that

1
1

M

i
i

w
=

=∑ . The resulting ( )ip x  is a multivariate Gaussian distribution with means iµ  and 

covariance i∑  of thi  Gaussian Mixture :  

 
( 1)( 1/2( ) ( ))

( /2) (1/2)

1( ) .
((2 ) | | )

i
T

i ix x
i n

i

p x e µ

π
−− − −ΣΣ=

∑
  (2.13) 

where iµ  is an n-dimensional vector with ( )i E xµ =  and iΣ  is a n by n covariance matrix 

with [( )( ) ']i i iE x xµ µΣ = − − , and | |iΣ  is the determinant of covariance matrix. 

Collectively the parameters of the GMM are denoted as, { , , },1 .i i iw i Mλ µ= Σ ≤ ≤  

Although the model supports a full covariance matrix, using a diagonal covariance matrix 

has the advantage of computational efficiency since repeated matrix inversions are not 

required. Since cepstral coefficients are already largely uncorrelated by nature, using a 

diagonal covariance matrix is a reasonable approach. In a study by Reynolds, Quatieri and 

Dunn, it has been suggested that diagonal covariances outperform a full covariance matrix 

(Reynolds, Quatieri et al. 2000) for speaker identification.  

The likelihood of the GMM parameters are trained using the Expectation 

Maximization (EM) algorithm. EM is an iterative maximum likelihood algorithm used 

when there are unknown hidden parameters, in this application the knowledge of which 

mixture is associated with a particular training feature vector. The expectation step of the 

algorithm uses the current parameter estimates to identify the mixture likelihoods for each 

feature vector, and then the maximization step uses a mixture-likelihood weighted 

combination of features to re-estimate the model parameters which maximizes the 

likelihood of GMM. With an initial model λ , a new model λ  is estimated such that 
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( | ) ( | )p X p Xλ λ≥ . The new model then becomes the base model and the process repeats 

until some convergence is reached. The likelihood of GMM model λ for the training vector 

1 2{ , ,......, }TX x x x=
  

 is calculated by, 

 
1

( | ) ( | ).
T

t
t

p X p xλ λ
=

=∏


  (2.14) 

2.2.3.2. Hidden Markov Model (HMM) 

The state-of-the-art method used for temporal sequencing in speech processing is 

the HMM. HMMs sequentially model and combine the statistical models of the acoustic 

parameters of a speech signal, with each state of the HMM modeling the acoustic 

characteristics of a particular time-region of the speech data. HMMs align the frames of 

acoustic data against the HMM states and calculate the overall likelihood of the acoustic 

data generated by the model. Traditionally, GMMs have been used to represent the 

probability distribution of each state, but most modern techniques have now replaced 

GMMs with DNNs that directly model state probabilities.  The main advantage of HMM 

is its ability to model the changes in temporal pattern with spectral patterns of 

vocalizations.  

In a Markov process, the probability of a random variable at a given time depends 

only on the probability at the preceding time (Rabiner 1989). 

 1 1 1[ | , ......] [ | ]t j t i t k t j t ip q S q S q S p q S q S+ − += = = = = =   (2.15) 

where iS , i=1….N , is the N distinct states of the system  at any given time and tq is the 

state at time t. A Markov process needs less memory and is called an observable Markov 

model, since each state corresponds to an observable event.  
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A Hidden Markov Model, an extension of the Markov process, is a double 

embedded stochastic process, with an underlying stochastic process that cannot be 

observed directly. A Hidden Markov Model, 𝜌𝜌 can be defined by, 

• The number of states in the model N, where individual states are denoted 

by 1 2{ , ,...... }NS S S S=  and the state at time t   as tq . 

• The number of observation symbols M, per state 1 2{ , ...... }.mV v v v=   

• The state transition probability matrix, 𝑎𝑎𝑖𝑖𝑖𝑖, transition from state i to state j. 

 1( | ),1 , .ij t j t ia p q S q S i j N+= = = ≤ ≤   (2.16) 

• The output probability matrix, 𝐵𝐵 = 𝑏𝑏𝑖𝑖(𝑘𝑘), where 𝑏𝑏𝑖𝑖(𝑘𝑘) is the probability of 

emitting symbol, 𝑣𝑣𝑘𝑘, at state i. 

 ( ) ( | ),1 ;1j k t jb k p v q S j N k M= = ≤ ≤ ≤ ≤   (2.17) 

• The initial state distribution 1( ),1 .i jp q S i Nπ = = ≤ ≤   

HMM can be conveniently denoted as ( , , ).A Bρ π=  Since , ( )ij ja b k  and iπ  are 

probabilities they must satisfy, 
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  (2.18) 
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Basic problems of HMM  

1) The evaluation problem - Given the observation sequence 1 2{ , ...... }TO o o o=  and 

model ( , , )A Bρ π= , how to efficiently calculate ( | )p O ρ , the probability of 

observation given model. 

2) The decoding problem - Given the observation sequence 1 2{ , ...... }TO o o o= and 

model ( , , )A Bρ π= , how to efficiently choose a state sequence, 1 2, ,...... tq q q q= , 

which best explains the observation sequence. 

3) The learning problem – how to adjust model parameters, ( , , )A Bρ π= , to 

maximize ( | )p O ρ . 

Solution to Evaluation problem – Forward Backward Procedure 

In order to find ( | )p O ρ , the sum probability of all possible state sequence needs 

to be calculated. Let 1 2, ,...... TQ q q q=  be such a state sequence, then, 

 ( | ) ( | , ) ( | )
allQ

p O p O Q p Qρ ρ ρ=∑   (2.19) 

 
1 1 1 2 2 1 2

1 2

1 2
, ....

( ) ( )...... ( ).
T T T

T

q q q q q q q q T
q q q

b O a b O a b Oπ
− −

= ∑   (2.20) 

This method of calculation is computationally expensive, since it has a time 

complexity of ( )TO N , where N is the number of states and T is the number of 

observations. A more efficient way of solving the problem is through a dynamic 

programming algorithm called the forward backward algorithm. 

Let a forward variable ( )t iα  be defined as  

 1 2( ) ( , ,...... , | ).t t t ii p O O O q Sα ρ= =   (2.21) 
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Then ( )t iα  can be calculated recursively by, 

1) Initialization 

 1 1( ) ( ),1 .i ii b O i Nα π= ≤ ≤   (2.22) 

2) Induction  

 1 1
1

( ) ( ) ( ),1 1;1 .
N

t t ij j t
i

j i a b O t T j Nα α+ +
=

 = ≤ ≤ − ≤ ≤  
∑   (2.23) 

3) Termination  

 
1

( | ) ( )
N

T
i

p O iρ α
=

=∑   (2.24) 

Step 1 initializes the forward calculation, step 2 iteratively calculates all the forward 

probabilities as illustrated in Figure 4, and step 3 calculates ( | )p O ρ  as the sum of forward 

variables. The time complexity for this method is 2( )O N T .  

 

                                                   𝛼𝛼𝑡𝑡(𝑗𝑗)                                 𝛼𝛼𝑡𝑡+1(𝑗𝑗) 

Figure 4: Computation of forward variable 

The backward probability is defined similarly to the forward probability as 

 1 2( ) ( , ,...... | , )t t t T t ii p O O O q Sβ ρ+ += =   (2.25) 
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( )t iβ can be calculated iteratively in a time-reverse fashion as 

1) Initialization  

 1,1 .T i Nβ = ≤ ≤   (2.26) 

2) Induction 

 1 1
1

( ) ( ) ( ), 1, 2,......1,1
N

t ij j t t
j

i a b O j t T T i Nβ β+ +
=

= = − − ≤ ≤∑   (2.27) 

3) Termination 
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( | ) (1)
N

i
i

p O ρ β
=

=∑   (2.28) 

Solution to decoding problem – The Viterbi Algorithm 

 The forward algorithm calculates the overall probability that a given HMM 

generates a particular observation sequence. In speech recognition it is also important to 

find an optimal state path that generates an observation, which the forward algorithm does 

not accomplish. An alternative dynamic programming method called the Viterbi Algorithm 

is used to find the single highest probability state sequence for a specific observation 

sequence.  

The viterbi algorithm is a recursive algorithm which finds the best state sequence 

as follows: 

1) Initialization 

 1 1( ) ( ),1i ii b O i Nδ π= ≤ ≤   (2.29) 

 1( ) 0.iϕ =   (2.30) 

2) Recursion 
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 11
( ) max ( ), 2 ;1 .t t ij j ti N

j a b O t T j Nδ δ −≤ ≤
 = ≤ ≤ ≤ ≤    (2.31) 

 1
1

( ) arg max ( ) , 2 ;1 .t t ij
i N

j i a t T j Nϕ δ −
≤ ≤

= ≤ ≤ ≤ ≤   (2.32) 

3) Termination  

 *

1
max ( ),ti N

P iδ
≤ ≤

=   (2.33) 

 *

1
max ( ).T Ti N

q iδ
≤ ≤

=   (2.34) 

4) Back Tracking 

 * *
1 1( ), 1, 2,......,1t t tq q t T Tϕ + += = − −   (2.35) 

* * * *
1 2, ......., TQ q q q=  is the desired optimal state sequence. 

Solution to learning problem- Baum Welch Algorithm 

 The solution to the learning problem requires a method to adjust the model 

parameters ( , , )A B π to maximize the probability of observation given the model. The 

learning problem is solved using the iterative procedure of the Baum Welch algorithm, 

which similar to the GMM estimation process is also an Expectation Maximization method. 

 Let ( )t iγ  be the probability of being in state iS  at time t   

 ( ) ( | , ).t t ii p q S Oγ ρ= =   (2.36) 

Equation (2.36) can be written in terms of forward backward variables as 
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  (2.37) 

Let ( , )t i jξ  be the probability of being in state iS  at time t  and jS  at time 1t +   

 1( , ) ( , | , )t t i t ji j p q S q S Oξ ρ+= = =   (2.38) 
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The relationship between ( )t iγ  and ( , )t i jξ  can be shown as follows, 
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The expected number of times that state 𝑆𝑆𝑖𝑖 is visited or the expected number of transitions 

made from state 𝑆𝑆𝑖𝑖 can be calculated as follows,  
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Using these formulas, we can define the HMM parameters ( , , )A B π ,  

 1expected frequency in state  at time (t=1) = ( ).i iS iπ γ=   (2.43) 
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  (2.44) 

After the re-estimation process the new model ( , , )A Bρ π=  will have a higher 

likelihood than the previous parameters ( | ) ( | ).p O p Oρ ρ>  The re-estimation is done 

iteratively by replacing ρ  by ρ  until it converges. The expectation step is the calculation 
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of ρ from ρ and in the maximization step, maximization over ρ . A more detailed 

description of HMMs can be found in a tutorial by Rabiner (Rabiner 1989). 

2.2.4. Speaker identification 

Speaker identification is a subset of speaker recognition, which includes the tasks 

of both speaker verification and speaker identification. Speaker identification is the 

problem of determining which specific speaker is speaking from a set of known speakers. 

In contrast, speaker verification is a binary classification problem that takes a 

claimed/proposed individual identity and answers the question of whether the identify 

claim is true or false. Within speaker identification, there are two types of tasks, closed set 

and open set. In closed set speaker identification, the best match for the speaker is selected 

from a known group of speakers, there is no rejection strategy. As the number of speakers 

in the known group increases the difficulty in identifying the speaker increases. In the open 

set speaker identification, there is an additional identification category of “none of the 

above”, such that if a claimed speaker’s verification fails, there won’t be any identification 

result. Speaker recognition is further divided into text-dependent and text independent 

categories according to whether the input text is specifically prompted (Reynolds 1995). 

Figure 5 and Figure 6 shows the basic structure for a typical speaker recognition system. 
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Figure 5: Speaker Identification System (Reynolds 1995)  

 

Figure 6: Speaker Verification System (Reynolds 1995) 

Human speech contains many speaker specific characteristics, which are due to 

both physiological and learned differences. Vocal fold characteristics and vocal tract shape 

are the main physiological factors that contribute to speaker specific features in a person’s 

voice. Air flow through vocal folds during speech production creates resonances in vocal 

tract that changes the spectral content of the speech wave as indicated by typical speech 

features such as MFCCs. Another distinguishing feature for speaker identification is the 
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fundamental frequency or pitch of the speech waveform. Learned aspects of speech like 

dialect and speaking rate also helps to distinguish between speakers.  

Like speech recognition, speaker identification employs short term processing of 

speech by segmenting the voice activity extracted from recorded speech waveform 

typically into 20 – 30ms frames. Noise and silence removal is important in speaker 

identification tasks, since these can represent a false model related to aspects other than 

individual identity. Feature vectors are extracted from each frame using feature extraction 

methods, generally Mel frequency cepstral coefficients due to its ability to match frequency 

sensitivity of human ear. The next step in speaker identification is to model a statistical 

representation of speaker from the feature vectors, typically using methods such as GMMs 

and HMMs. 

In Gaussian mixture speaker modeling, the techniques explained in section 2.2.3.1. 

for acoustic modeling are used.  This model is then applied to speaker identification and 

verification. Speaker identification typically uses a Maximum Likelihood classifier. For a 

reference set with S speaker models  1 2{ , ...... }Sλ λ λ λ= , a speaker S with maximum 

likelihood for the test feature vector 1 2{ , ...... }TX x x x=  is 

 

1

( | )arg max ( ).
( )

s
s

s S

p XS pr
p X

λ λ
< <

=   (2.45) 

If we assume equal prior probabilities ( | )t spr x λ  and a constant ( )p X   for all speakers 

and calculate log probabilities, from equation (2.45) ,  

 

1 1
arg max log ( | ),

T

t s
s S t

S p x λ
≤ ≤ =

= ∑   (2.46) 

where T is number of feature vectors and ( | )t sp x λ  is calculated from Equation (2.12). 
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 In HMM speaker modeling, a HMM model ( , , )A Bρ π=  for each speaker is trained 

using the methods detailed in section 2.2.3.2. The feature vector for the test speech is given 

to the system as observation sequence 1 2{ , ,......, }TO o o o=  and the likelihood of the 

observation sequence for all speaker models is calculated. The speaker model with 

maximum likelihood is selected as the predicted speaker.  

 

1
arg max ( | )s

s S
S p O ρ

≤ ≤
=   (2.47) 

2.2.5. Gender identification 

Gender identification from speech determines whether the speech is uttered by a 

male or female speaker. The differences in male and female voices arise from 

physiological, acoustical and perceptual factors (Wu and Childers 1991). Physiological 

differences are due to the differences in vocal tract length, vocal fold length and vocal fold 

thickness (Titze 1989). These differences in physiology contribute to acoustic differences 

in male and female speech. The formant frequencies of females are related to formant 

frequencies of males by a scaling factor that is inversely proportional to vocal tract length. 

Formant frequencies are typically 20% higher for female than that of males (Wu and 

Childers 1991).  The fundamental frequency (pitch) is higher for females than males, which 

is also a distinguishing factor when determining gender from speech. It has been found that 

fundamental frequency is scaled according to the vocal fold length (Titze 1989). In a study 

by Singh and Murry, perceptual factors used to characterize female speakers were nasality, 

pitch and effort, whereas effort, hoarseness and pitch were used for male speakers (Murry 

and Singh 1980).  
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Gender models can be implemented using GMMs/HMMs and MFCCs, similarly to 

the speaker modeling methods discussed in section 2.2.3 speaker identification. Feature 

vectors are extracted from short frames of speech after removing the noise and silence 

regions using MFCCs. MFCCs are then used to train the GMMs/HMMs for male and 

female class. Test speech is then classified into male or female category using the 

maximum likelihood values obtained by comparing the test speech with both male and 

female models.  

2.3. Bioacoustics 

Bioacoustics investigates how sound is produced and received by animals. Animals 

rely upon their vocalizations for a wide variety of purposes, including communicating with 

the members of same species and monitor their surroundings. In recent years, the speech 

processing and machine learning techniques from human speech processing techniques 

have begun to be used to study animal communication for detection and classification, with 

applications to censusing, acoustic ecology and understanding the effect of noise on animal 

communication.  

In addition to signaling information, animal vocalizations convey information 

about species, gender, group and individual identity. The analysis and classification of 

animal sounds can be a powerful tool for monitoring the diversity of animal communities. 

This can be a noninvasive and economical way to study vocally active species who live in 

habitats that are difficult to reach or are sensitive to human intervention and may help 

biologists for conservation of endangered species.  
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In this section tasks associated with Bioacoustics, in particular, speaker 

identification and gender identification and techniques incorporated from speech 

processing are discussed. 

2.3.1. Bioacoustics tasks 

The main tasks associated with bioacoustics are classification, detection and 

localization. These tasks have a broad range of applications across many species. The 

human speech processing community has addressed similar tasks for many years, although 

with a different set of constraints and challenges, and the bioacoustic community has the 

potential to use such human speech processing techniques to address the tasks associated 

with bioacoustics. There are many challenges associated with this, since data collection is 

much more difficult and since human speech is better understood in terms of the 

relationship between acoustics and meaning.  However, by using human speech processing 

tools such as HMMs, GMMs and DNNs, the performance on bioacoustics tasks can be 

improved. 

2.3.1.1. Classification 

Classification is the task of classifying vocalizations into one or a set of predefined 

categories, which may include species, call type, individual identity, gender or behavioral 

context. Classification is a supervised task that involves training data having annotated 

labels which is used to train models for classification. The results of classification are 

usually represented as a confusion matrix, which provides a visual representation of correct 

classification against misclassified data. Classification methods are often used as an 
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underlying layer for detection in classifying a specific type of category within a larger data 

set (Clemins 2017).   

The classification task includes various applications such as call classification 

(Clemins, Johnson et al. 2005, Garland, Castellote et al. 2015), species classification (Roch, 

Soldevilla et al. 2007, Trifa, Kirschel et al. 2008), individual classification (Brown, 

Smaragdis et al. 2010, Ji, Johnson et al. 2013, Dvorakova, Ptacek et al. 2017) and gender 

identification (Volodin, Volodina et al. 2015), to  classify vocalizations into predefined 

categories using a model created from labeled vocalizations from each category. 

As discussed in section 1.1, there are several template matching methods like 

Dynamic Time Warping (DTW), Spectrogram Cross Correlation (SCC) and Matched 

filtering as well as statistical models like Gaussian Mixture Models (GMM) and Hidden 

Markov Models (HMM) for classification. In template matching chosen vocalizations are 

considered as templates and the test vocalizations are matched against the templates to 

measure similarity. DTW (Kogan and Margoliash 1998, Brown and Miller 2007) is a 

template matching method that was widely used method for human speech recognition 

before HMMs and GMMs because of its ability to compare non-linear waveforms. DTW 

finds optimal match between two sequences of speech feature vectors by finding the path 

that reduces the total distance between them, using dynamic programming algorithm. In 

standard DTW algorithm the distance between the test signal and template signal is 

calculated initially by arranging them on the vertical and horizontal axis respectively using 

the equation, 

 Dist[ , ] | test[ ] template[ ] |,i j i j= −   (2.48) 
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where i  and j   are the indices along the vertical and horizontal axis respectively. Then the 

dissimilarity is calculated as cost using a cost matrix C   given by 

 
[ 1, 1]

[ , ] Dist[ , ] min [ 1, ]
[ 1, ]

C i j
C i j i j C i j

C j i

− − 
 = + − 
 − 

  (2.49) 

DTW performs better in simple less noisy data sets for isolated vocalization 

classification however when noisy or complex vocalizations are present DTW requires 

careful selection of data to achieve a higher performance.  

Another common method for automatic animal vocalization classification is 

Spectrogram Cross Correlation (SCC) (Khanna, Gaunt et al. 1997, Mellinger and Clark 

2000) which cross correlates the template vocalization with the test vocalization. The 

resulting series of recognition values represents the similarity between the target and test 

vocalizations. Given the target set and the spectrogram for the test signal, the similarity is 

calculated as 

 ( , ) template( , )test( , )
t f

t f t f t fα =∑∑   (2.50) 

The disadvantages of SCC include performance dependency on size of FFT, 

window length and type. Since SCC is a quantitative method a good amount of correlation 

is required for successful classification and variations in patterns of vocalization can affect 

SCC performance. Variations in the ambient background and noisy environment can affect 

correlation between two spectrograms.  

Another template matching method is matched filtering (Mellinger and Clark 

1997), which is a template matching technique works in the temporal domain unlike SCC, 

which works in the frequency domain. Matched filtering is used to identify known signal 
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from a signal corrupted with white noise, accomplished by cross correlation between 

template and test vocalization in time domain.  

GMMs and HMMs, which are the primary modeling and classification approaches 

used in this work, are explained in section 2.3.2.2 and section 2.3.2.3 respectively. 

As discussed in Section 2.2.4, speaker identification is the task of determining the 

speaker who is vocalizing in a particular speech segment. Speaker identification plays an 

important role in conservation of animals, as it can be used as an effective tool for 

population monitoring, helping to understand behavioral traits and generating data for 

conservation tools (Terry, Peake et al. 2005). In situations where animals are sensitive to 

human interference, identifying individual from their vocalizations can be used as an 

alternative, non-invasive marking method.  

Several studies have been conducted in the bioacoustics field regarding the 

presence of individual identity characteristics in animal vocalizations. Studies involving 

Rhesus monkeys have shown individual and kin recognition in contact calls of female 

rhesus macaques (Rendall, Rodman et al. 1996). This study used playback calls from close 

related individuals to show that the subjects can identify individuals from their contact 

calls. Another study of Bottleneck dolphins by Janik (Janik, Sayigh et al. 2006) found that 

individual identity is present in dolphin signature whistles. In this study playback 

experiments using synthetic signature whistles of close relatives induced a favorable 

reaction in dolphins which indicated the individual identity in signature calls.  

In the two species under study in this work, mice and meerkats, there have thus far 

been few studies related to individuality.  For mice, it has been pointed out by Holy and 

Guo (Holy and Guo 2005) that the songs of male mice have individual characteristics. A 
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study by Penn (Musolf, Hoffmann et al. 2010, Hoffmann, Musolf et al. 2012) revealed that 

the ultrasonic vocalizations of mice are embedded with individuality and kinship. In 

meerkats, playback experiments showed meerkats being vigilant for a long duration when 

presented with close calls of subordinate meerkat, near the test subject and within seconds, 

from a physically impossible geographical position away from the test subject (Townsend, 

Allen et al. 2012). 

Some studies have implemented human speech processing techniques for 

individual identification from animal vocalization.  For example, a study by Brown et al. 

in killer whales used HMMs and GMMs for individual identification (Brown, Smaragdis 

et al. 2010). Studies using HMM-GMMs include tigers (Ji, Johnson et al. 2013), Norwegian 

ortolan bunting  (Trawicki, Johnson et al. 2005, Tao, Johnson et al. 2008, Adi, Johnson et 

al. 2010), African elephants (Clemins, Johnson et al. 2005) and  Asian elephants, chicken 

(Ren, Johnson et al. 2009). 

Gender identification determines the gender of the vocalizing animal from its 

vocalizations. Studies in some avian species with no visible sexual dimorphism has shown 

gender differences in vocalization, which is an effective non-invasive method for gender 

determination (Carlson and Trost 1992, Volodin, Kaiser et al. 2009, Volodin, Volodina et 

al. 2015). In study on screams of chimpanzees and bonbons using discriminant function 

analysis yielded 80% accuracy for gender identification in chimpanzees and 70% in 

bonbons (Mitani and Gros-Louis 1995). 22KHz alarm cries by rats in potential threat 

situation than actual threats showed sex differences (Litvin, Blanchard et al. 2007). Another 

study using vowel like grunt vocalizations in baboons showed gender differences in adults 

(Rendall, Owren et al. 2004). 
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Gender is often used in human speech recognition to generate gender-specific 

phonetic models, which implicitly involves gender classification as part of the automatic 

speech recognition process. 

2.3.1.2. Detection 

Detection involves identifying the presence of a specific type or subset of 

vocalization patterns from a recording of acoustic data. Detection includes both a binary 

classification problem, the presence/absence of a target vocalization, and an estimation 

problem, the determination of the start and end points of each vocalization.  The task is 

significantly compounded by the presence of environmental noise and non-target calls both 

from the same species and other species, as well as the possibility of overlap between 

multiple target vocalizations. Often detection incorporates classification methods - for 

example, detection using HMMs can simultaneously detect a vocalization and classify it 

into a set of trained categories. The most common methods for detection include 

spectrogram cross-correlation and match filtering, each of which involves using a sliding 

window approach and an evaluation function to generate a detection output, which is then 

compared against an established threshold. Assessment of detection results is measured 

using two methods, detection accuracy and timing accuracy. Detection accuracy includes 

both miss rates and false alarm rates, and timing accuracy involves the correct detection of 

start and end points. 

One particular application of detection is simple signal detection or “Voice Activity 

Detection” (VAD), which identifies the start and end times of vocal activity in the long 

recoding data of audio. This does not involve classification, but often involve separating 

overlapped vocalizations.  For human speech this is a well-studied area, and there are a 
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number of approaches used. One common approach includes a hypothesis testing approach 

that sets up statistical models for silence and non-silence using a set of features such as 

energy and spectral information.  

2.3.1.3. Clustering 

Clustering is an unsupervised method in which data with no category labels are 

clustered into subgroups according to some measurement criteria.  There are generally two 

types of approaches, divisive or agglomerative. Divisive clustering is a top-down approach 

where all data is initially placed into a single cluster and then the criteria is used to 

determine how to divide the data into groups, whereas agglomerative clustering is a 

bottom-up approach where each exemplar is initially identified as a cluster of one point, 

and then the criteria is used to determine how to combine groups together. The evaluation 

of clustering algorithms is an extremely difficult task due to the lack of ground truth. The 

consistency of clustering algorithms can be measured by evaluating the results across 

multiple runs and measuring the stability of the results obtained. However, consistency of 

clustering algorithms can change due to environmental noise and variations in gender or 

social group. Environmental noise may create clusters according to the noise rather than 

the vocalizations. Likewise, gender and social variability in larger groups can create 

subgroup clusters. Due to this, clustering results often cannot provide concrete conclusions 

and involves post-hoc analysis methods. 

Unsupervised clustering is used for vocal repertoire analysis of single species into 

call categories and to determine number of those groups. Unsupervised clustering can also 

be implemented in individual identification, where vocalizations of a single species are 

grouped according to the individual variability. To avoid the variability in call type affect 
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the accuracy of individual variability, methods may use only data from a single call type 

when clustering for individual identification (Adi, Johnson et al. 2010).  

2.3.2. Application of speech processing techniques to bioacoustics 

Historically, the bioacoustic community has generally analyzed and classified 

animal vocalizations by visual inspection of spectrograms. This analysis method is time 

consuming and sometimes less effective than automatic methods, since it relies on only 

visibly-obvious features like frequency variation and duration from vocalizations. In recent 

years the speech processing community started incorporating the advanced techniques 

developed for human speech processing into bioacoustics. For example, feature extraction 

techniques like MFCCs and PLPs, statistical modeling techniques like GMMs and HMMs, 

and most recently HMM based DNNs, have been applied to bioacoustics tasks.  This 

enabled the bioacoustics community to significantly improve accuracy on difficult tasks 

like species, individual and gender identification or vocalization classification of animals. 

This next section gives an overview of various speech processing methods used for 

bioacoustic signal analysis, with an emphasis on techniques used in this work. 

2.3.2.1. Greenwood Function Cepstral Coefficients (GFCC) 

As discussed in Section 2.2.2, MFCCs are most commonly used feature 

representation method in human speech processing techniques. MFCCs warp the perceived 

frequency to Mel-scale cochlear frequency map. Since the MFCCs are suitable for various 

speech processing tasks like speech recognition and speaker recognition, GFCCs (Clemins, 

Trawicki et al. 2006) were introduced as a generalized form of MFCCs to improve the 

bioacoustic signal processing of any given species. GFCC features use a generalized form 
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of the Mel-frequency scale in humans to create a cepstral coefficient feature representation 

that are theoretically well-founded across nearly all terrestrial mammals and give good 

vocalization representation across nearly all species. They can be implemented using only 

very basic knowledge of the minimum and maximum frequency range for a species. The 

advantage of GFCCs is that they use the information about the perceived frequency of the 

species under study. 

GFCC’s are derived from the Greenwood function (Greenwood 1990) 

 (10 ),axA k−   (2.51) 

where ,a A  and k are species specific constants and x  is the cochlea position.  This equation 

is used to convert perceived frequency to measured frequency and vice versa through 

following equations 

 10
1( ) ( ) log ( )p

fF f k
a A

= +   (2.52) 

 1( ) (10 ),paf
p pF f A k− = −   (2.53) 

where f is the real frequency and pf is the perceived frequency. The constant k can be 

approximated to 0.88 for a wide range of terrestrial mammals as shown by LePage(LePage 

2003). The constants a and A can be found using the equations,  

 min

1
fA

k
=

−
,  (2.54) 

 max
10log ( )fa k

A
= + , (2.55) 

where minf  and maxf are frequency range of the species. 

Warping is done in the same way as that of MFCCs described in section 2.2.2, in 

that the vocalizations are framed using a sliding window with length appropriate for the 
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vocalizations. If the frequency of vocalization is higher and has a rapidly varying temporal 

pattern, small window size such as 2 – 5ms is used. Vocalizations with lower frequencies 

and slowly varying temporal patterns uses larger window size (Clemins 2017). Once the 

vocalizations are framed, the magnitude spectrum is calculated using the short-term Fourier 

transform and warped to Greenwood scale using filter bank analysis. Log magnitude 

spectrum is calculated by taking the logarithm of sum of coefficients after multiplying each 

filter with the magnitude spectrum of the frame. The next step is to apply a discrete cosine 

transform for a compact representation of general shape of speech spectrum in cepstral 

domain. The resulting features are called Greenwood Function Cepstral Coefficients.  

Another feature extraction model for bioacoustic signal processing is generalized 

Perceptual Linear Prediction coefficients (gPLP), a generalized form of Perpetual Linear 

Prediction (PLP) designed to include the frequency perception of the any animal species. 

In gPLP, the filter banks are mapped to an equal loudness normalization curve to suit the 

animals hearing frequencies. Then filter bank energies are compressed and processed with 

low order all pole filter to solve for coefficients and converted to cepstral domain using 

direct recursion. A detailed description of gPLPs can be found in the paper by Clemins and 

Johnson (Clemins and Johnson 2006).  

2.3.2.2. Gaussian Mixture Model (GMM) 

Gaussian mixture models are used in various tasks in bioacoustics studies as a 

statistical model for representation of animal vocalizations, just as described in Section 

2.2.3.1 for human speech. In individual identification using GMMs, each individual is 

modeled as GMM speaker model with sufficient number of mixtures to model the data. 

GMMs can be used as a classifier to discriminate between the classes using a maximum 
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likelihood classification. GMMs offer a computationally efficient method to classify 

individuals when compared to the HMMs. 

Individual identification in Killer whales using GMMs has shown a 75% overall 

accuracy for vocalizations from four whales using single call type (Brown, Smaragdis et 

al. 2010). This study compared both HMMs and GMMs for individual identification and 

both methods showed little difference in accuracy. A study in Mashona mole-rats using 

GMM -Universal Background Model (UBM) showed an 76.7% of identification accuracy 

from mating calls of individuals (Dvorakova, Ptacek et al. 2017). In a study using 

Norwegian ortolan bunting data Adi et al. uses clustering of GMMs to identify the 

individuals from their vocalizations (Adi, Johnson et al. 2010). 

2.3.2.3. Hidden Markov Model (HMM) 

As described in Section 2.2.3.2, HMMs are able to model both temporal 

characteristics and spectral complexity of vocalizations. The temporal characteristics of a 

vocalization are modeled through the time-evolution of states and the spectral 

characteristics through the state distributions, typically GMMs in most of the speech 

recognition systems.  

Speaker and gender identification problems are similar to isolated word recognition 

of human speech recognition, since they use individually pre-segmented vocalizations. In 

isolated word recognition using HMMs, there is one HMM learned for each vocalization, 

with a number of states determined according to the temporal characteristics of the 

vocalization type. After deciding appropriate number of states HMMs are initialized and 

trained using the Baum-Welch algorithm as explained in section 2.2.3.2, which is an 

expectation maximization algorithm used to find the optimal parameters to represent each 
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model. In the next step Viterbi algorithm is used to find likelihood with each of HMMs and 

then classification is done using the maximum likelihood classifier (Clemins 2017).  

A study in red deer stag using MFCCs and HMMs revealed individual identity 

present in the common roars and yielded accuracy of 93% in individual identification 

(Reby, Andre-Obrecht et al. 2006). Another study in African elephants using the rumble 

vocalization showed 82.5% accuracy (Clemins, Johnson et al. 2005). The study in 4 Killer 

whales using N2 type of vocalization resulted in 75% accuracy (Brown, Smaragdis et al. 

2010). Individual identification of a protected species, Asian small clawed otters using 

chirp vocalizations, showed 91% accuracy between two individuals.    

2.3.3. Species under study 

In this study, mice (Mus musculus) and meerkats (Suricata suricatta) vocalizations 

are used to conduct speaker identification and gender identification experiments. In mice 

five types of calls are used for speaker identification and six types of calls were used for 

gender identification. For meerkats, only one type of call, called Close calls, were used 

since they are abundantly available. In this section a brief description about the species and 

their vocal repertoire is discussed. 

2.3.3.1. Mice 

Mice ultrasonic vocalizations has been studied for decades. In 1956 Zippelius and 

Schleidt found that mice pups emit distress calls ranging from 70 – 80 KHz from birth until 

the age at which their eyes open (Zippelius and Schleidt 1956). In 1972, Sales G D 

discovered that adult mice emit ultrasonic vocalizations in various social situations (Sales 

1972). Since then there have been many studies of mice vocalization patterns. 
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Mice emit sonic (Whitney 1970) and ultrasonic vocalizations during social 

interactions, ranging from 3 to 110 KHz (Holy and Guo 2005, Heckman, McGuinness et 

al. 2016). Pups produce isolation calls to gain the attention of mothers (Ehret 1992), while 

adults mainly produce vocalizations during courtship (Holy and Guo 2005) or territorial 

dispute  (Hammerschmidt, Radyushkin et al. 2012). Female mice also produce these USVs 

when alone, searching for pups, or in the presence of other females (Portfors 2007). In this 

work we focus on ultrasonic vocalizations by adult mice. 

Mice vocalizations have a song like structure containing syllables arranged in a 

sequential pattern, ranging from 30 to 200ms in duration (Holy and Guo 2005). 

Vocalizations have been categorized USVs into 9 types of syllables based on length, 

bandwidth, and overall shape syllables using spectrogram analysis (Hanson and Hurley 

2012).  

These categories include: 

• Short syllables were less than 10 ms in duration.  

• Flat syllables had less than 5 KHz of modulation. 

• Harmonic syllables contained at least one segment with at least one 

harmonic (most of these also had breaks in frequency). 

• Jump syllables contained at least one break in frequency with no break in 

intensity (and no harmonics). 

• Up syllables increased in frequency (sweep.5 KHz). 

• Down syllables decreased in frequency (sweep.5 KHz). 

• Arc syllables increased and then decreased in frequency, with the highest 

frequency reaching .5 KHz above the beginning and end frequencies. 
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• U syllables decreased and then increased in frequency, with the lowest 

frequency reaching .5 KHz below the beginning and end frequencies. 

• Complex syllables contained two or more directional changes in frequency 

and .5 KHz modulation of frequency. 

A few types of vocalizations are shown below: 
 

Figure 7: A few calls from Mice repertoire 
7a: Down Sweep, 7b: Up Sweep 
7c: Jump, 7d: Inverse Chevron 

2.3.3.2. Meerkats 

Meerkats are cooperatively breeding mongoose species that live in groups of 3 to 

50 individuals. Each group has a dominant male and female who is responsible for most of 

the breeding and rest of the group members are helpers. The helpers are responsible for 

pup care, the male helpers stay in the group for one or two years and then they disperse 

into other groups. Female helpers either inherit the dominant position and stay in the group 

or get expelled from the group by the dominant female (Clutton-Brock, Russell et al. 2005).  
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Meerkats are highly social and territorial animals that spend most of their time 

foraging in groups for non-vertebrate preys. While foraging they keep their head to the 

ground which obstructs their vision and makes them prone to predator danger. Biologists 

believe that this foraging behavior is the reason for highly developed acoustic 

communication in meerkats (Reber, Townsend et al. 2013). Meerkats have around 30 

different call types (Collier, Townsend et al. 2017), the most common call type is the Close 

calls which is believed to be used for group cohesion (Townsend, Hollén et al. 2010). It 

has been found that Close calls are individually distinctive, used for identifying the group 

members (Townsend, Allen et al. 2012) and plays an important role in territorial defense 

(Young and Monfort 2009). The Close calls ranges in frequency from 600-1000Hz and can 

travel up to 20 meters (Townsend, Hollén et al. 2010).  

Meerkats produce aggression calls when other individuals approach them while 

eating or digging (Mausbach, Braga Goncalves et al. 2017). Lead calls are emitted when 

the individual changes the foraging patch which can facilitate the entire group to move. 

Move calls are emitted when an individual wants to change the foraging patch but require 

a minimum number of individual in favor for a change in forage patch to happen (Gall, 

Strandburg-Peshkin et al. 2017). Another call type is alarm call, emitted when spotting a 

predator, which can convey the information about type of predator and level of urgency 

(Townsend, Rasmussen et al. 2012). 
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Figure 8: Meerkat call types 
8a: Lead call, 8b: Close call 

8c: Move call, 8d: Alarm call 
 

2.4. Summary 

The speech processing, feature extraction and statistical modeling techniques used 

for human speech have been discussed in this chapter, with emphasis on speaker and gender 

identification which is the main focus of this thesis. The applicability of human speech 

processing techniques along with modified feature extraction models for bioacoustic 

signals have been presented. In the next chapter the techniques explained in this chapter 

are implemented to identify the speaker and gender in mice from their vocalizations.  
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Chapter 3 

Speaker and gender identification in Mice 

3.1. Overview 

This chapter demonstrates using a Gaussian Mixture Model (GMM) approach with 

Greenwood Function Cepstral Coefficient (GFCC) features for speaker identification and 

gender identification in mice using ultrasonic vocalizations. The vocalizations are 

segmented to extract voice activity and GFCC features are extracted from the segmented 

data, which in turn is used to train GMMs and to evaluate the effectiveness of the speaker 

and gender identification models. 

3.2. Data Collection 

Data for this study included vocalizations from 40 mice, 20 Male and 20 Female, 

collected at the University of Buffalo – SUNY, Psychology department (Burke, Screven et 

al. 2017). These study subjects are used for research in production and perception of 

ultrasonic vocalization in mice. Vocalizations were recorded using an ultrasonic 

microphone in individual sound-attenuated enclosures, in both isolated and visually paired 

conditions, including same-gender and opposite-gender pairing, for 1-hour periods. 

Vocalizations were recorded in segments of 5 minutes duration and used two channels, 

labeled Mouse A and Mouse B. The sampling rate of the vocalizations was 300KHz. 

Recordings were categorized as Female-Female, Male-Male, Male-Female, Non-Exposure 

or Pre-Exposure according to the nature of exposure. Calls were manually labeled into 9 

different vocalization categories (Hanson and Hurley 2012): Chevron, Chirp, Complex, 

Down-sweep, Flat, Harmonic, Inverse Chevron, Jump and Upsweep. The recordings had 
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timestamps with fields of start time, end time, channel number, name of the mouse, peak 

frequency, duration and category of vocalizations, all of which were manually labeled by 

the researchers at SUNY by visual analysis of spectrograms after the recordings were 

made. The typical frequency range of the ultrasonic vocalizations is between 30 and 125 

kHz, with an average frequency around 70KHz. 

3.3. Experimental setup 

The steps involved in classifying the vocalizations according to speaker or gender 

in this work include segmentation, dividing vocalizations into training and test sets, 

extracting features from vocalizations using GFCC, training the GMMs using the labeled 

training set and classifying the vocalizations in test set according to classification criteria. 

This work has been implemented using MATLAB 2017b. The process flow is shown in 

the block diagram below: 

 

Figure 9: Work flow block diagram 

Segmentation used the timestamp fields start time, end time, channel number and 

call category. A MATLAB script was used to extract these fields from the timestamps and 
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each recorded audio file from all exposure categories was segmented for the voice activity 

according to the extracted fields. The segmented files were named according to the name 

of the individual subject vocalizing.  Segment duration varied from 2ms to 190ms. The 

segments were sorted according to speaker and gender for further processing. The call 

distribution for each category according to the call types are given in Table 1. 

Table 1: Call Type occurrences over exposure categories 

Category 
 
Call Type 

Female -
Female 

Male - 
Female 

Male - 
Male 

Non-Exposure/ 
Pre-Exposure 

Total 

Chevron  2 7 1 0 10 

Chirp 33 35 114 13 195 

Complex 16 55 23 7 101 

Down Sweep 5 116 86 7 214 

Flat 9 52 25 12 98 

Harmonic 1 21 17 2 41 

Inverse Chevron  16 34 33 36 119 

Jump 62 21 64 20 167 

Upsweep 210 36 31 125 402 

 

The test and training data sets were created using an M fold cross validation 

approach. In M-fold cross validation, the data is divided randomly into M evenly sized 

partitions called folds.  M experimental runs were conducted, with each consisting of (M-

1) partitions being used for training and 1 partition used for testing. This ensured that each 

vocalization segment was used as a test segment one time. 

With the low end of the frequency range at 30kHz, the minimum frame size to 

include at least 2-3 full cycles of any target frequency is about .1ms. In addition, since the 
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minimum duration of vocalizations was approximately 2ms, a 2ms window size was the 

maximum window size that could be used for framing. Based on this, in this work a window 

size of 1ms was used in order to capture the spectral complexity of mice ultrasonic 

vocalizations. A step size of half the window size was used.  

GFCC features were extracted from the vocalization frames and GMMs for each 

individual were trained using the GFCC features from all vocalizations in the training set 

for the individual. Thirty-two mixtures were used for training the GMMs for speaker 

identification based on the amount of data available. Gender identification, which had a 

larger amount of data for each category, used 64 mixtures for the GMMs. Classification 

was done using a maximum-likelihood approach, by applying GMMs to determine the 

likelihood of the data for each category and choosing the highest likelihood category as the 

outcome.  

Results are displayed in confusion matrix with the rows of the matrix representing 

the known class and columns representing the predicted class. Diagonal entries of the 

confusion matrix represent correct classification of each class. Accuracy of the 

classification is calculated as the ratio of sum of diagonal entries to sum of all entries. 

Another variable included is the chance accuracy, the measure of how well the classifier 

would have performed by chance, measured by taking the ratio of maximum number of 

entries for a known class to sum of total entries. 

 Each predicted class is also evaluated according to their Signal to Noise 

Ratio(SNR) calculated as  

 s n n

n

SNR SNR
SNR
+ −   (3.1) 
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where s nSNR +  is the SNR of the vocalization and nSNR  is the SNR of the background 

noise, extracted from 100ms of the audio waveform before and after a vocalization.  

3.3.1. Feature extraction 

Greenwood Function Cepstral Coefficients (GFCC), as described in section 2.3.2.1, 

were used as features in this experiment. The GFCC features were calculated on individual 

windows, placed across each vocalization segment. Since the vocalizations have relatively 

high frequency content, in the ultrasonic range, only a small window size is needed to 

frame the vocalizations, on the order of 1ms. The vocalizations themselves are of short 

duration, so when the window size increases the number of frames generated from each 

vocalization segments decreases, which will in turn decrease the number of examples and 

therefore the number of mixtures that can be used to model the speaker using GMMs.  

The Greenwood frequency warping constants were found based on the published 

frequency range of 30KHz – 125KHz (Holy and Guo 2005). To make sure of the use of all 

possible lower ultrasonic vocalizations, the minimum frequency was extended downward 

to 25KHz. 12 GFCC coefficients are extracted from each frame. The constants for 

calculating the GFCCs are calculated as follows, 

 0.88,k =   (3.2) 

 min 25000 113636.7,
1 1 0.88
fA

k
= = =

− −
  (3.3) 

 max
10 10

125000log ( ) log ( 0.88) 0.297.
113636.7

fa k
A

= + = = =   (3.4) 

The SPEFT MATLAB tool box designed to extract speech features for bioacoustics 

such as GFCCs was used for feature extraction (Li 2007). Additional parameters included 
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delta, delta – deltas and short-term energy from each frame to augment the feature vector 

using methods described in section 2.2.2. 

3.3.2. Model training 

The resulting features from GFCC extraction were used to train GMMs using the 

training data as explained in section 2.2.3.1 for each class. GMMs are trained using the 

built-in function fitgmdst.m in matlab. The algorithms involved in fitgmdist.m are Gaussian 

Mixture Model likelihood optimization with the k-means++ algorithm for initialization 

(McLachlan and Peel 2004). The Gaussian Mixture Model likelihood optimization 

algorithm uses an iterative Expectation Maximization (EM) algorithm to optimize the 

likelihoods of GMMs. The k-means++ algorithm is used to initialize the parameters of EM 

algorithm for GMMs. The k-means++ algorithm assumes a specific number of clusters to 

be calculated based on the number of mixtures, with an equal probability assigned for each 

cluster. The covariance is selected as diagonal and identical. In the next step a first initial 

center 1µ taken uniformly from each data point in train set. Then other centers, 1......j k=

at random from X  for 1......m n= , 1...... 1p j= −  are calculated using, 
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where 2 ( , )m pd x µ is the distance between observation ,  and p pm Mµ  is the set of all 

observations closest to centroid pµ  and mx  belongs to pM . Then the Mahalanobis distance 

of each data point from the centers are calculated and is assigned to the closest center.  
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3.3.3. Identification 

Once the GMMs were trained, the likelihoods of each test segment is calculated for 

all GMMs. The overall log likelihood of the segment was calculated by combining the 

likelihoods of all frames then choosing a single category as the predicted class based on 

the maximum log likelihood as discussed in section 2.2.4. The predicted class is then 

compared with the known class and results are displayed in a confusion matrix format.  

3.4. Speaker identification 

Speaker identification was implemented using most common call types: Up Sweep, 

Down Sweep, Chirp and Jump. Vocalizations were sorted for each speaker according to 

call types and the GFCC features were extracted from both train and test sets using the 

methods explained in section 3.3.1. The GMMs were trained for each speaker using a cross-

validation process as described in section 3.3. The test set was evaluated by calculating 

GMM likelihoods and selecting a predicted class as described in section 3.3.3. 

3.4.1. Subjects 

Although there are 40 speakers in the dataset, due to the highly isolated conditions 

of the cages, not all individuals produced vocalizations. Because of this, there is a high 

variance in the call types and number of calls available for each speaker for speaker 

identification experiments. Based on the distribution of data, individuals with at least 9 

calls for each call type were used for speaker identification. The call type distribution used 

for the speaker identification experiments is given in Table 2 below.  
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Table 2: Call distributions for each speaker for speaker identification 

 

3.4.2. Results 

As described in Section 3.3, speaker identification was implemented using the 

Jump, Up Sweep, Down Sweep and Chirp call types. Vocalizations were framed using a 

window size of 1ms and GFCC features were extracted. Each individual was modeled 

using 32 mixtures and identification was implemented using maximum likelihood 

classifier. The overall results, compared to chance accuracy, for each individual call type 

as well as for all call types grouped together in a single experiment, are given in Table 3. 

Speaker Up 
Sweep 

34313 13 
34334 60 

Captain 9 
Darby 124 
Jackie 23 
Luna 45 

Minerva 14 
OJ 45 

 

Speaker Down Sweep 
Captain 25 

OJ 13 
Bob 17 

Brutus 20 
Cedric 10 
Jamie 10 
Ralph 17 
Seifer 17 
Squall 9 

 

Speaker Chirp 
34312 17 
34322 15 
34332 48 
34334 9 
Darby 15 
Jamie 17 

 

Speaker Jump 
34313 9 
34312 22 
34322 16 
34332 22 
Darby 52 

Minerva 9 
Shadowcat 12 

 

2a: Up Sweep call    2b: Down Sweep calls 

2c: Chirp calls  2d: Jump calls 
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Table 3: Accuracy of speaker identification using different call types 

 Call Type Accuracy Chance 

Jump 
(7 individuals) 

78.3 36.36 

Up Sweep 
(8 individuals) 

58.9 37.2 

Down Sweep 
(9 individuals) 

33.3 39.7 

Chirp 
(6 individuals) 

50.4 36.6 

All calls  
(27 individuals) 

46.3 17.1 

 

The highest accuracy was for the Jump calls, which had 7 callers with a sufficient 

number of this call-type, with an accuracy of 78.3% for individual identification. The 

second highest accuracy was for Up Sweeps with 8 individuals, an accuracy of 58.9%. 

Speaker identification using all call type had an accuracy of 46.3%, which was not as high 

as several of the individual call types but does indicate that it is possible to differentiate 

individuals to some extent without first segmenting into individual call types. 

For the initial experiment, Jump calls were selected because most of the mice 

literature using ultrasonic vocalizations are based on the pitch jumps in the vocalizations 

analogous to the jump calls in this work (Holy and Guo 2005, Hoffmann, Musolf et al. 

2012). The resulting confusion matrix for speaker identification for Jump calls is shown in 

Figure 10. 

Overall accuracy for Jump calls was 78.3%. Higher accuracies are shown by 

individuals that have a larger number of data instances to train the speaker model, higher 

energy in the frequency bands, higher SNR or higher call duration. For example, Darby 

and Shadowcat had the highest SNRs, with means of 30.1 and 32.8 respectively. But 
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Shadowcat had vocalizations with higher duration than Darby, and Darby had more data 

to create the speaker model. Several individuals show specific error patterns. For example, 

the individuals Minerva and Darby seem to have somewhat similar vocalizations, with 

SNR and duration in the same range. This could be the possible reason that more than half 

of the vocalizations for Minerva are classified as Darby. 

 
Figure 10: Speaker identification for Jump calls with 7 individuals (Accuracy 78.3%) 

Speaker identification results with Up Sweep calls are shown below in Figure 11. 

Up Sweep calls had the second highest accuracy of 58.9%. For Up Sweeps Minerva shows 

same pattern of error to Jump calls.  

 
Figure 11: Speaker identification for Up Sweep calls with 8 individuals (Accuracy 

58.9%) 
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The Down Sweep calls had the least accuracy, 33.3% which was less than  chance, 

as shown in Figure 12. Only a few speakers showed good accuracy, and the errors are 

widely distributed, suggesting that perhaps there is less individually identifying 

information in these calls. 

 

 
Figure 12: Speaker identification for Down Sweep calls with 9 individuals (Accuracy 

33.3%) 

 
Figure 13: Speaker identification for Chirp calls with 6 individuals (Accuracy 50.4%) 

Speaker identification using calls from all 27 individuals with at least 10 

vocalizations had an accuracy of 46.3%, compared to a chance of 17.1%. The results for 

speaker identification using all calls are shown in confusion matrices in Figure 14. Results 

vary significantly across individuals but don’t suggest a broad pattern.   
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Figure 14: Speaker identification for all calls grouped together with 27 individuals 
(Accuracy 46.3%) 
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Short term energy, delta and delta – deltas were used to augment feature vector for 

speaker identification with Jump calls. A window size of 1ms and step size of 0.5ms were 

used to frame the vocalizations and GFCCs, delta, delta – delta and short-term energy were 

extracted from each vocalization. Speaker identification using GFCCs and short-term 

energy had an accuracy of 75.5%. Speaker identification using GFCCs, short term energy 

and delta along with 64 mixtures to incorporate the increased vector space had an accuracy 

of 76.9%. Speaker identification using GFCCs, short-term energy, delta and delta – deltas 

had an accuracy of 76.2%. The confusion matrices for the speaker identification using short 

term energy, delta and delta- delta are shown below.  

 
Figure 15: Speaker identification for Jump calls using GFCC and Short-term energy 

(Accuracy 75.5%) 

 

Figure 16: Speaker Identification for Jump calls using GFCC, Short-term energy and 
delta (Accuracy 76.9%) 



60 
 

 

Figure 17: Speaker Identification for Jump calls using GFCC, Short term energy, Delta 
and Delta - Delta (Accuracy 76.2%) 

3.5. Gender identification 

Gender identification was implemented using call types Up Sweep, Down Sweep, 

Chirp, Jump and Inverse Chevron. Each call type was sorted into Male and Female class 

and GFCC features were extracted from each frame of the test and train sets using the 

methods described in section 3.3.1. Once the models were trained test samples were 

classified using the methods explained in section 3.3.3.  

3.5.1. Subjects 

Individuals with the specified call types were selected for gender identification 

experiments. Although data was separated into specific call types to test the gender data 

present in the vocalizations, gender identification was also tried using all vocalizations 

from all individuals to check dependency of gender data on vocalization category. Call 

distribution for gender identification using single call type for both male and female class 

is given in Table 4. 
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Table 4: Call distribution for gender identification 

          Gender 
 
Call type 

 
Female 

 
Male 

Jump 87 78 

Chirp 39 47 

Up Sweep 115 61 

Down sweep 51 125 

Inverse chevron 47 62 

All calls 605 622 

 

3.5.2. Results 

As described in Section 3.3, gender classification was implemented using 10-fold 

cross validation to sort test and train sets. Vocalizations were framed using a window size 

of 1ms and GFCC features were extracted. Each gender was modeled using 64 mixtures 

and identification was implemented using maximum likelihood classifier. The overall 

results, as compared to chance accuracy, for each individual call types as well as for all 

call types grouped together in a single experiment, is given in Table 5. 

Table 5: Accuracy and chance of Gender classification using different call types 

Call Type Accuracy Chance 
Jump 93.2 52.7 
Chirp 87.2 54.6 

Up Sweep 90.9 65.3 
Down Sweep 62.9 56.1 

Inverse Chevron 84.4 56.9 
All calls  88.9 54.5 
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Jump calls yielded the highest accuracy of 93.2%.  The confusion matrix for Jump 

calls is shown in Figure 18. 

 
Figure 18: Gender identification for Jump calls (Accuracy 93.2%)  

Identification using Jump calls had higher accuracy for female vocalizations 

(97.7%) than that for male vocalizations (87.2%), probably because of the higher spectral 

energy in female vocalizations. Females had a Signal to Noise Ratio (SNR) higher than the 

males, with a mean of 28 and standard deviation of 10.2, with 90% of the females had SNR 

higher than 10.2 whereas males had an SNR with a mean of 4.8 and standard deviation of 

6.9. The two misclassified females have the lowest SNR, less than 5, among the females. 

The 5 out of the 10 males that were misclassified had a higher SNR, ranging from of 11 to 

22 with only 10 males being in that SNR range. A comparison between male and female 

SNR is given in Figure 19. 

 

Figure 19: SNR comparison for Male and Female mice for Jump calls 
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Gender identification with Up Sweep calls had an accuracy 90.9%. The confusion 

matrix for gender identification using Up Sweep calls is given in Figure 20. 

 
Figure 20: Gender identification for Up Sweep calls (Accuracy 90.9%) 

Up Sweep calls had the same pattern of errors with 13 out of 17 males were 

misclassified which had a SNR with mean 17.8 and standard deviation 4.0, with only 20 

males in that SNR range. Females shows the same pattern of SNR as of the Jump calls with 

93% of females had a mean SNR of 22.9 and standard deviation of 6.43.  

Gender identification was also tested using Down Sweeps, Chirps and Inverse 

Chevron calls which yielded an accuracy more than that of chance except for Down Sweep. 

Down Sweeps had the lowest accuracy, 62.9%. For Down Sweeps the females with a lower 

SNR was classified as males and males with higher SNR were classified as females. The 

confusion matrix for Down Sweeps are shown in Figure 21. 

 
Figure 21: Gender identification for Down Sweep calls (Accuracy 62.9%) 
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Figure 22: Gender identification for Chirp calls (Accuracy 87.2%)

 

Figure 23: Gender identification for Inverse Chevron calls (Accuracy 84.4%) 

Gender identification results using all the calls from all individuals had an accuracy 

of 88.9% with males and females having almost same accuracy and it followed same error 

pattern as of the Jump and Up Sweep calls. The confusion matrix for identification is given 

in Figure 24.   

 

Figure 24: Gender identification for all calls (Accuracy 88.9%) 

3.6. Summary 

This chapter has discussed speaker and gender identification experiments on 

ultrasonic mice vocalizations using GFCC features and GMM statistical classification. The 

results for individual identification and gender identification show that the Jump, Chirp 
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and Up Sweep calls contain individual and gender specific clues, with results significantly 

higher than chance. In the next chapter Speaker identification using meerkat Close calls 

will be discussed. 
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Chapter 4 

Speaker identification in Meerkats 

4.1. Overview  

This chapter investigates using a Hidden Markov Model (HMM) - Gaussian 

Mixture Model (GMM) approach with Mel Frequency Cepstral Coefficients (MFCC) 

features for speaker identification in meerkats using Close calls. The vocalizations are 

segmented to extract voice activity and MFCC features are extracted from the segmented 

data, which in turn is used to train HMM – GMM and for testing purposes.  

4.2. Data collection 

Data for this study included vocalizations from 6 meerkats, 1 female and 5 males 

collected at the Kalahari Research Center, located in Kuruman River Reserve in Northern 

South Africa, during July - September of 2017. The data collection took place in the context 

of a long-term study on meerkats, the Kalahari Meerkat Project. These study subjects are 

used for research in movement coordination and determining the factors that influence the 

movement decisions as a group by Department of Evolutionary Biology and Environmental 

Studies, University of Zurich, Zurich, Switzerland. Vocalizations were recorded using 

collars attached to each meerkat that recorded GPS and audio, for 21 days of 3 hour-long 

sessions at a sample rate of 8 kHz. The audio recordings were manually labelled by 

analyzing the spectrograms using the software Adobe Audition CC 2018, which can embed 

labels into audio waveforms. Voice activity was extracted from all recordings using Adobe 

Audition and sorted according to the call type for each individual. There were multiple call 
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types, including Close calls, Alarm, Move, Lead, and Aggression calls, in which Close 

calls were abundantly available for all individuals.   

4.3. Experimental setup 

Steps involved in classifying the vocalizations according to speaker include 

dividing vocalizations into training and test sets, extracting features from vocalizations 

using MFCC, training the HMM – GMMs using the labeled training set and classifying the 

vocalizations in test set according to classification criteria. This work is implemented using 

the Recognition Toolkit (RTK) (RTK 2004) and the Hidden Markov Model Toolkit (HTK) 

(Young, Evermann et al. 2002).  

HTK is a commonly used toolkit for building HMMs. Although HTK is designed 

for recognizing human speech, in this work it has been adapted for speaker recognition 

tasks in meerkats using Close calls. HTK uses Baum – Welch algorithm to train each 

speaker model and uses Viterbi algorithm for classification of test data as explained in 

section 2.2.3 and 2.2.4. 

RTK is a MATLAB graphical user interface to HTK which can help with sound 

recognition in animals. RTK can categorize the data, create labels for the data, create 

configuration files and prepare the vocalizations so that it can be trained and classified by 

HTK. The screen shot for graphical user interface of RTK is given in Figure 25.  

Create category is used to organize the vocalizations according to the task being 

implemented. In this work vocalizations are categorized according to each individual. HTK 

requires Master Label Files (MLF) to train the vocalizations. Create label is used to 

automatically create the MLFs. Configuration is used to create the config file that specifies 

the type of feature extraction to be used, window size, step size, maximum frequency, 
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minimum frequency, number of filters, number of cepstral coefficients and pre-emphasis 

value. The configuration file can also specify the features to be extracted as short-term 

energy, delta, acceleration and zero crossing rates. The configuration files are used to 

customize HTK for a specific task. 

 
Figure 25: Recognition Toolkit(RTK) user interface 

Data preparation extracts GFCC features from the vocalizations according to the 

specifications given in the configuration file. The training and cross validation trains the 

data by specifying the number of states and GMM mixtures that should be used in the 

modeling of speakers using HMMs. Recognition is used to recognize the speaker from the 

test data using the trained models for each speaker.  
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The speaker identification with Close calls was conducted using both GMMs and 

HMMs for 6 individuals. Both HMM and GMMs were implemented using RTK and HTK. 

In this work a 10-fold cross validation is used to select test and training sets because of 

good amount of data available for each speaker. Since the duration of Close calls available 

for this work ranges from 38ms to 322ms and Close calls have a low frequency range, a 

window size of 5ms was used. The step size was selected as half the window size. GMMs 

were implemented using a single state HMM with 32 mixtures. For HMMs 16 states and 

16 mixtures were used for training each speaker model. For both GMMs and HMMs short 

term energy is used to augment the feature vector. 

4.3.1. Feature extraction 

Greenwood Function Cepstral Coefficients (GFCC), as described in section 2.3.2.1, 

were used as features in this experiment.  

The Greenwood frequency warping constants were found within the frequency 

range of 600 to 1000 Hz (Townsend, Hollén et al. 2010) for the Close calls. To make sure 

the maximum use of species frequency range, the minimum and maximum frequency was 

set as 400Hz and 1200Hz respectively. 12 GFCC coefficients are extracted from each 

frame. The constants for calculating the GFCCs is found as follows, 

 0.88,k =   (4.1) 

 min 400 3333.33,
1 1 0.88
fA

k
= = =

− −
  (4.2) 

 max
10 10

1200log ( ) log ( 0.88) 1.24.
3333.33

fa k
A

= = = + =   (4.3) 
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A MATLAB interface RTK designed for HTK was used for feature extraction as 

described in the previous section 4.3. The additional feature vectors used were short-term 

energy, delta and delta-deltas which is explained in section 2.2.2. 

4.3.2. Model training 

The features from each vocalization are extracted as GFCCs as shown previously 

in Section 2.2.3.2. By using Baum – Welch re-estimation the model parameter for HMMs 

are calculated that optimizes the likelihood of the training set of each speaker.  

4.3.3. Identification 

A maximum likelihood classifier for HMMs as explained in Section 2.2.4 was used 

in this work, implemented using HTK via the RTK toolkit. The likelihood of observation 

vector from each vocalization given the speaker model for each speaker was calculated and 

the speaker with maximum likelihood was selected as the predicted speaker. In HTK, the 

Viterbi decoder is used for finding the maximum likelihood. 

4.4. Speaker identification in Meerkats 

Speaker identification was implemented using Close calls because of the large 

number of data available. Vocalizations were sorted according to each speaker and the 

GFCC features were extracted from both train and test sets using methods explained in 

Section 4.3.1. The model with maximum likelihood is selected as the predicted class as 

explained in previous section 4.3.3. The results are displayed using a confusion matrix.  
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4.4.1. Subjects 

Six meerkats, 1 female and 5 males, with Close calls ranging from 67 to 337 in 

number were used in this experiment. Although there were other types of calls, only a very 

few calls were not labeled as Close calls. The call distribution of each meerkat for Close 

calls is given in the Table 6 below. HMB is oldest and dominant male, HRT and HTB are 

oldest subordinates, LT and RT are youngest subordinates. The female meerkat is 

designated HTB. 

Table 6: Call distribution of Close calls 

Individual Number of calls 
HMB 101 
HRT 67 
HTB 188 
LT 440 

PET 207 
RT 77 

4.4.2. Results 

As described in Section 4.3 speaker identification was implemented for 6 meerkats 

with Close calls using GMMs and HMM-GMMs. Vocalizations were framed using a 

window size of 5ms and GFCC features were extracted as explained in Section 4.3.1. For 

Identification using GMMs each individual was modeled using 32 mixtures and 

identification was implemented using maximum likelihood classifier as explained in 

Section 4.3.3. Even though there were more vocalizations for training each speaker model, 

since meerkat vocalizations were less spectrally complex the number of mixtures required 

to model each individual was less than that of mice data.  
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Results of speaker identification using GMMs are given below in Figure 26. The 

confusion matrix for identification using HMMs is shown in Figure 27. 

 
 

Figure 26: Speaker identification in Meerkats with Close calls using GMMs (Accuracy 
90.8%, Chance 40.7%) 

 

 

Figure 27: Speaker identification in Meerkats with Close calls using HMM - GMMs 
(Accuracy 94.4%, Chance 40.6%) 

C_HMB C_HRT C_HTB C_LT C_PET C_RT

HMB 97 0 0 0 4 0

HRT 0 52 13 1 0 0

HTB 0 11 173 0 3 1

LT 0 4 5 390 4 37

PET 0 1 1 1 202 2

RT 0 0 2 7 1 67

C_HMB C_HRT C_HTB C_LT C_PET C_RT

HMB 98 0 0 0 3 0

HRT 0 51 13 2 1 0

HTB 0 9 174 0 5 0

LT 0 1 3 420 1 12

PET 0 1 0 1 204 1

RT 0 1 1 4 1 70
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Speaker identification using GMMs had an accuracy of 90.8% and using HMMs 

had an accuracy of 94.4%. The results suggest two pairs of confusable individuals, HRT 

and HTB as well as LT and RT.  Errors between these pairs represented more than half the 

identification errors for the HMM results, totaling 38 of the 60 errors made. HRT and HTB 

are the oldest subordinates and LT and RT are the youngest subordinates. Each of these 

confusable pairs have similar social status within the group, which suggests the possibility 

that call similarity could also be connected to dominance or role within the social group 

structure.  The dominant male HMB shows a higher accuracy even though vocalizations 

for that individual was quite noisy with most of the vocalizations having a low Signal to 

Noise Ratio (SNR). 

When speaker identification was implemented using various state and mixture 

combination, there was a gradual increase in the accuracies, as shown in Table 7. Although 

the state mixture combination of 16 and 16 were selected for the speaker classification, the 

general trend was that accuracy continued increasing both with number of mixtures and 

number of states. The increase with mixtures is expected, due to increased spectral 

resolution of the state distributions, but the increase corresponding to a larger number of 

states suggests that there is additional temporal or timing information that is individually 

identifying as well.   
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Table 7: HMM number of states vs number of mixtures 

number of  
states 

No 
of mixtures 

4 6 8 10 12 14 16 18 

2 90.7 91.4 91.3 90.6 92.2 92.1 92.6 92.2 

4 91.3 92.3 92.5 92.5 92.5 92.9 93.5 93.6 

8 91.1 92.5 92.5 93.3 93.8 94.1 94.1 93.4 

16 92.9 92.8 93.9 93.7 93.4 93.6 94.4 94.3 

32 91.9 93.2 93.9 93.4 94.1 94.0 94.1 93.7 

4.5. Summary 

This chapter has discussed speaker identification experiments on meerkat 

vocalizations using GFCC features and HMM-GMM statistical classification with slightly 

higher accuracy for identification using HMMs. The results for individual identification 

shows that Close calls contain speaker specific cues, both in spectral and temporal domain 

of the vocalizations. 
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Chapter 5 

Conclusion and future work 

5.1. Overview 

This work has focused on the identification of speaker and gender from bioacoustic 

data sets, using vocalizations from mice and meerkats. A feature extraction technique 

explicitly developed for animal vocalization analysis, Greenwood Function Cepstral 

Coefficients (GFCC), is used to extract the features from vocalizations, which are modeled 

and classified using the statistical modeling techniques Gaussian Mixture Models (GMM) 

and Hidden Markov Models (HMM). 

5.2. Summary of contribution and significance 

The main contribution of this work is the application of human speech technology 

to bioacoustic data sets, for the tasks of speaker and gender identification.  This study 

examines the extendibility of GFCC feature extraction, GMMs and HMMs for individual 

and gender identification for animal vocalizations.  

In the study using mice data set, the presence of speaker and gender cues in 

ultrasonic vocalizations is supported by the classification results. Although mice 

vocalizations have been studied for decades, the incorporation of speech processing 

methods such as GFCCs and GMMs may help better understand and easy to analyze the 

communication and behavior in this species.  

In the study using meerkat Close calls, presence of speaker specific cues was found 

in Close calls. GFCCs and HMM implementations both indicated that the temporal 

sequence of Close calls contains speaker specific data. The comparison of speaker 
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identification using GMMs and HMMs has shown a slight improvement in results for 

HMMs.  

5.3. Future work 

One potential experiment to extend this work would be to automatically detect the 

vocalizations from the long recording data using HMMs, rather than using manual 

timestamps, for further implement speaker and gender identification. This can be done by 

modeling noise data and all call types using HMMs and connecting them in a parallel loop 

so that the detection runs through the whole recording.  

Another potential experiment, for the meerkat data in particular, could be 

identifying individuals using collar recordings from another individual. This would allow 

exploration of the relationship between SNR and identification accuracy in much noisier 

vocalizations. Being able to do this automatically could be a further support the application 

of speaker identification methods to problems in bioacoustics such as acoustic censusing. 
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