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Abstract Currently, phonotactic spoken language recog-
nition (SLR) and acoustic SLR systems are widely used
language recognition systems. Parallel phone recognition
followed by vector space modeling (PPRVSM) is one typi-
cal phonotactic system for spoken language recognition. To
achieve better performance, researchers assumed to extract
more complementary information of the training data using
phone recognizers trained for multiple language-specific
phone recognizers, different acoustic models and acoustic
features. These methods achieve good performance but usu-
ally compute at high computational cost and only using
complementary information of the training data. In this
paper, we explore a novel approach to discriminative vector
space model (VSM) training by using a boosting framework
to use the discriminative information of test data effectively,
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in which an ensemble of VSMs is trained sequentially.
The effectiveness of our boosting variation comes from
the emphasis on working with the high confidence test
data to achieve discriminatively trained models. Our vari-
ant of boosting also includes utilizing original training data
in VSM training. The discriminative boosting algorithm
(DBA) is applied to the National Institute of Standards and
Technology (NIST) language recognition evaluation (LRE)
2009 task and show performance improvements. The exper-
imental results demonstrate that the proposed DBA shows
1.8 %, 11.72 % and 15.35 % relative reduction for 30s, 10s
and 3s test utterances in equal error rate (EER) than baseline
system.

Keywords Language recognition · Discriminative
boosting algorithm (DBA)

1 Introduction

Spoken language recognition (SLR) has become an increas-
ingly crucial technique for many applications such as search
engines and language translation systems [1]. Without loss
of generality, we can consider language recognition as a
classification problem [2]. Given a set of training data and
associated labels, the first step is to learn characteristics of
languages from the training data, and then classify a speech
utterance to the most probable language based on the lan-
guage model. Currently, acoustic language recognition (LR)
systems [3] and phonotactic LR systems [2] are both widely
used.

Parallel phone recognition followed by vector space
modeling (PPRVSM) is one typical phonotactic system for
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spoken language recognition. In PPRVSM system, vari-
ous phone recognizers are applied in parallel and fused at
the confidence score level. Generally, the PPRVSM sys-
tem can be developed in three ways. The first one is to use
parallel phone recognizers on multiple language-specific
speech data with different phone sets [2], eg. Hungarian,
Czech and Russian phone-recognizers developed by the
Brno University of Technology (BUT) [4]. The second way
is to use phone recognizers on the same language-specific
speech data with one phone set but using different acoustic
models [5], like GMM-HMM, ANN-HMM [4] and DNN-
HMM acoustic models. The third way is to use phone
recognizers on the same language-specific speech data with
one phone set but using different acoustic features, such
as the Mel-frequency cepstral coefficients (MFCC) and
perceptual linear prediction (PLP) features. All the three
ways focuses on extract complementary information of the
training data, but do not explore any information of the test
data.

In fact, in actual test conditions, the training and test
data are variable in speakers, background noise, channel
conditions. To achieve higher robustness to variable test
conditions, it is necessary to use the discriminative informa-
tion of the useful resource of test data effectively. Recently,
discriminative training techniques such as maximummutual
information (MMI) [6, 7], minimum phone error (MPE) [8],
minimum classification error (MCE) [9] and heteroscedas-
tic linear discriminant analysis [10] have been proposed
and outperformed nondiscriminative models in language
recognition task [11]. In language recognition, discrimina-
tive training focuses on defining the classification decision
boundaries so that the equal error rate (EER) [12] can

be decreased. But these training approaches are always
computationally expensive and sometimes difficult to
implement.

In this paper, we propose a boosting method using sup-
port vector machines (SVMs) as discriminative classifiers to
build a regression backend for language recognition tasks.
The discriminative boosting algorithm (DBA) methods uses
a simple confidence criterion. The motivation of DBA is
to find the high confidence test utterances and use them as
training data, so that more useful discriminative informa-
tion of the test database can be fully exploit and achieve
better language recognition performance. Because the com-
ponent classifiers have the same structure as the classifier
in baseline system and are trained with the same criterion,
little new implementation and additional computation are
needed.

The rest of the paper is organized as follows. In Section 2
we review PPRVSM baseline language recognition system.
The implementation of discriminative boosting algorithm
method is introduced in Section 3. We also discuss vari-
ants and implementation of the algorithm. Experimental
setup is described in Section 4. The results and discussions
that DBA experimentally compared against the PPRVSM
approach are in Section 5 followed by conclusions in
Section 6.

2 PPRVSM Baseline System

In this work we use PPRVSM [1, 13] language recognition
system as baseline system. The architecture of the system is
shown in Fig. 1.

Figure 1 Architecture of phonotactic language recognition system.
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Generally, the language recognition system maps the
input data x to a high dimensional feature supervector as
following:

� : x → ϕ(x). (1)

Then the supervector ϕ(x) is sent to the classifier and a
decision is made based on the output of the classifier [14].
According to Fig. 1, the PPRVSM system comprises three
main components: decoding, expect counting and the vector
space modeling (VSM).

2.1 Decoding

In this system, phoneme recognizers are employed to con-
vert the speech into phone lattices according to the given
acoustic model, then the lattices are used to perform phono-
tactic analysis to classify languages in SVM. The phoneme
recognizers are usually trained either on multiple language-
specific speech data with different phone sets [2] or on
the same language-specific speech data with one phone
set but using different acoustic models [5]. In this paper,
DNNs, GMMs and ANNs have been used to compute state
observation probabilities for all tied states in the HMM
set [15].

2.2 Expect Counting

Given the acoustic model ΛAM , the expected counts over
all possible hypotheses in the lattice � of speech utterance
X are computed as follows [14]:

cE(hi, ..., hi+N−1|�)
= E[cE(hi, ..., hi+N−1)|X, ΛAM, ME]

=
∑

hi ...hi+N−1∈�,h(ei )=hi

⎡

⎣α(ei)β(ei+N−1)

i+N−1∏

j=i

ξ(ej )

⎤

⎦ ,

where acoustic model ΛAM is language independent, ME

is the estimates of the N-gram probabilities that maxi-
mize

∑
H f (X|H, ΛAM)P (H |L) (H is an N-gram phone

sequence, H = hi...hi+N−1, L is the language model of the
language under consideration, f (X|H, ΛAM) is the likeli-
hood of the speech utterance X given ΛAM and H ). α(ei) is
the forward probability of the starting node of edge ei and
β(ei+N−1) is the backward probability of the ending node
of edge ei+N−1. ξ(ej ) denotes the posterior probability of
the edge ej .

Then the probability of the phone sequence hi...hi+N−1

in the lattice is calculated as follows:

p(hi...hi+N−1|�) = cE(hi ...hi+N−1|�)∑
∀mcE(hm...hm+N−1|�) , (2)

Let di = hi...hi+n−1 (n <= N), the probabilities of pho-
netic N-grams in the lattice � can form a phonotactic feature
supervector for the given utterance ϕ(x):

ϕ(x) = [p(d1|�x), p(d2|�x), ..., p(dF|�x)] , (3)

here F = f N
n (fn is the number of the phonemes of the

frontend phone recognizer and N is the order of N-gram).
�x denotes the lattice generated from data x by a phone rec-
ognizer. p(dq|�x) is the probability of the N-gram dq in the
lattice.

2.3 VSM

In PPRVSM, each spoken utterance is represented by a
super-vector and then modeled using an SVM [13], the
output score is computed as following:

f (ϕ(x)) =
∑

l
αlKTFLLR(ϕ(x), ϕ(xl)) + d, (4)

here ϕ(xl) are support vectors that are trained using the
Mercer condition. In this paper, SVM using term frequency
log-likelihood ratio (TFLLR) kernel [16] are employed as
back-end of the language recognition system. KTFLLR is a
TFLLR kernel computed as:

KTFLLR(ϕ(xi), ϕ(xj )) =
F∑

q=1

p(dq|�xi
) ∗ p(dq|�xj

)

=
F∑

q=1

p(dq|�xi
)

√
p(dq|�all)

∗ p(dq|�xj
)

√
p(dq|�all)

, (5)

the p(dq|�all) is the observed probability of dq across all
lattices. In this work the training stage is always carried out
with a one-versus-rest strategy.

3 Discriminative Boosting Algorithm SLR System

The discriminative boosting algorithm is proposed in this
section. The DBA algorithm takes as input a training set of
n utterances Tr = {(xi, yi)|i = 1, 2, ..., n} where xi is the
i-th input training data as described in Section 2. yi ∈ Y is
the class label associated with xi . In this paper, it is assumed
that the set of possible labels Y = {lk|k = 1, 2, ..., K} is of
finite cardinality K . The test set of m utterances is denoted
as Te = {xtj |j = 1, 2, ..., m}. M = {Mq |q = 1, 2, ..., Q}
denotes the set of language models of the system. Mq =
{mdlqk|k = 1, 2, ..., K}, in which mdlqk is the language
model of the q-th subsystem for k-th language. Because the
training stage of language recognition is carried out with a
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one-versus-rest strategy, then yi will be mapping to either 1
or -1. The DBA algorithm is described as follows:

a) Initializing: When class k is viewed as the target lan-
guage, Tr will be updated to Tr′ = {(xi, y

′
i )|i =

1, 2, ..., n} where

y′
i =

{ +1, i = k

−1, i �= k
. (6)

b) Training: Training the language model for the Q sub-
systems using the updated training database Tr′. The
language model matrix are

M =

⎡

⎢⎢⎢⎣

M1
M2
...

MQ

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

mdl11 mdl12 · · · mdl1K
mdl21 mdl22 mdl2K

...
...

. . .
...

mdlQ1 mdlQ2 mdlQK

⎤

⎥⎥⎥⎦ . (7)

c) Testing: In PR-SVM language recognition system, if
an SVM is employed as the classifier, the output score
matrix is computed as:

F = [
F1F2 · · ·FQ

]′
, (8)

where

Fq =

⎡

⎢⎢⎢⎣

fq(ϕ(xt1))|mdlq1 · · · fq(ϕ(xt1))|mdlqK

fq(ϕ(xt2))|mdlq1 · · · fq(ϕ(xt2))|mdlqK

...
. . .

...

fq(ϕ(xtm))|mdlq1 · · · fq(ϕ(xtm))|mdlqK

⎤

⎥⎥⎥⎦ , (9)

where fq(xtj )|mdlqk
is the confidence score of j -th test

utterance of q-th subsystem based on the k-th language
model computed using Eq. 3.

d) Votes Counting: Then the subsystems take a vote and
decide which language every test utterance belongs to
according the belief score. The votes counting matrix is
defined as:

Cv = [Cv1Cv2 · · ·Cvm] , (10)

where Cvj is a k-dimensional supervector of votes
counting of the which is computed as:

Cvj = [
cj1cj2 · · · cjK

]
, (11)

where

cjk =
Q∑

q=1

vjqk, (12)

where vjqk is the number of votes of q-th subsystem
based on the k-th language model for the j -th test
utterance, which is computed as:

vjqk =

⎧
⎪⎨

⎪⎩

1, if {fq(ϕ(xtj ))|mdlqk
} > 0 and

max∀p
{fq(ϕ(xtj ))|mdlqp,p �=k

} < 0

0, otherwise

. (13)

We select this criterion because the confidence score
f (·) denotes the distance from the hyperplane of SVM
classifier. The constrain fq(ϕ(xtj ))|mdlqk

> 0 and
{fj (ϕ(xtj ))|mdlqp,p �=k

} < 0 indicates a high confidence
decision between target language and non-target lan-
guage.

e) Update Training Database: Let ytj = lk if cjk > V .
Here V denotes the threshold. Then put (xtj , lk) into
new database TDBA. We describe two versions of the
algorithm which we denote DBA-M1 and DBA-M2.
The two versions are equivalent in their pre-processing,
feature extracting and decoding steps and differ only
in updating methods of new training database TrDBA.
TrDBA in DBA-M1 is only composed of high confi-
dence test data, while in DBA-M2 is composed of both
test data and original training data.

DBA-M1: TrDBA = [TDBA]
DBA-M2: TrDBA = [TDBA Tr]

f) Training: Repeat Step a)-c) except using the updated
training database TrDBA.

g) LDA-MMI fusion: LDA-MMI method is used to
maximize the posterior probabilities of all the belief
scores [17] with objective function like this [18]:

FMMI(λ) =
∑

∀i

log
p(xi |λg(i))P (g(i))∑

∀jp(xi |λj )P (j)
, (14)

where

x = [w1f1(ϕ(x)), w2f2(ϕ(x)), ..., wNfN(ϕ(x))],
(15)

g(i) denotes its class label. wn indicate weights of the
belief of the n-th (1 ≤ n ≤ N) subsystem. Here∑

nwn = 1. Usually we define wn = Mn/(
∑

mMm).
Mn is the number of the test utterances that fit the crite-
rion in the n-th subsystem. P(j) is the prior probability
of class j . p(x|λ) is weighted Gaussian mixtures.

The architecture of DBA language recognition system is
shown in Fig. 2. Such a language recognition system has
three advantages. First, the mentioned criterion can select
high confidence test data effectively. Second, the selected
criterion is simple and easy to implement. Third, the DBA
iteration share the same pre-processing, feature extracting
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Figure 2 Architecture of DBA language system.

and decoding work with baseline system, so it introduce low
additional computation cost.

4 Experimental Setup

4.1 Baseline Language Recognition System

In this paper a PPRVSM language recognition system is
used as baseline system. The first step is to tokenize speech
by the means of running phone-recognizers and provides
the posterior probabilities of the phone occurrences. Several
phone recognizers are used in parallel to decode the speech
into phone lattices for analysis. In this paper we use:

(a) Hungarian (HU), Czech (CZ) and Russian (RU) Tem-
poral Patterns (TRAPs) phone-recognizers based on
ANN-HMM acoustic model that developed by the
Brno University of Technology (BUT) [4]. BUT
decoders for Czech (CZ), Hungarian (HU) and Rus-
sian (RU) are applied to compute phone posteriori
probabilities, as used in NIST LRE tasks by many
groups [19, 20]. The phone inventory is 43 for Czech,
59 for Hungarian and 50 for Russian.

(b) English (EN) phone-recognizer based on DNN-HMM
acoustic model that developed by the Tsinghua Uni-
versity [21]. In this paper, we use the same training
algorithm to train DNN-HMMs as in [15]. In the
training stage of DNN-HMM acoustic model, 13-
dimensional PLP features plus their first order and
second order derivatives are input features to DNNs.
The input PLP features are normalized to have zero
mean and unit variance based on conversation-side
information [22]. The GMM-HMM acoustic model
contains 150 states with 32 Gaussians each. Firstly
the model is trained using maximum likelihood, then
the ML-trained model is used to generate state-aligned

transcriptions for the succeeding DNN training. A
triphone language model is trained using the transcrip-
tion of the 100h Switchboard English corpus [23].
We get the phone inventories of size 47 for English
phoneme recognizer, including non-phonetic units
as intermittent noise and non-speech speaker noise
(mapped to unknown phoneme), short pause and
silence. We set the initial learning rate to 0.2 at the
fine-tuning stage. At the end of every epoch, the frame
accuracy of the development set is evaluate and the
learning rate is reduced by a factor of 2 if the accuracy
decreases. Dynamic Bayesian Network (DBN) pre-
training is first applied following the process in [24]
for the sigmoidal network. The implementations of the
DNN are based on an extended version of CUDAMat
library [25].

(c) English (EN) and Mandarine (MA) phone-recognizer
based on GMM-HMM acoustic model that developed
by the Tsinghua University [26]. The Mandarin phone
recognizer employed in our experiments are devel-
oped using the GMM-HMM architecture and trained
on about 30 hours of conversational telephone data.
There are 64 phone models for the phone recognizer,
each of which is a tied-state left-to-right context-
dependent GMM-HMM with 32 Gaussians per state.
For acoustic feature extraction, 12 PLP coefficients are
extracted every 10 ms over a 25 ms hamming window.
These features are augmented by their first and second
order deltas, resulting in a 39 dimension feature vector

Table 1 TrDBA of varied threshold V , DBA-M1.

V = 6 V = 5 V = 4 V = 3 V = 2 V = 1

number 4939 8364 11845 15894 22707 35262

error rate 4.74 % 7.61 % 11.12 % 17.23 % 23.94 % 31.88 %
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Table 2 Performance of DBA, NIST LRE 2009, DBA-M1, closed-set (EER and Cavg in %. The optimal values are shown in bold face).

Front-end Duration Baseline V = 6 V = 5 V = 4 V = 3 V = 2 V = 1

30s EER 2.43 2.86 2.38 2.12 1.93 1.96 2.52

Cavg 2.37 2.76 2.27 2.05 1.84 1.90 2.45

HU 10s EER 7.38 6.87 5.50 4.84 4.41 5.37 6.41

Cavg 7.24 6.76 5.42 4.73 4.46 5.23 6.29

3s EER 23.00 18.86 16.60 15.65 15.19 16.86 23.01

Cavg 22.61 18.54 16.50 15.40 14.94 16.78 22.93

30s EER 2.21 2.53 2.10 1.82 1.67 1.82 2.30

ANN Cavg 2.00 2.40 1.97 1.72 1.56 1.65 2.23

-HMM RU 10s EER 6.23 5.60 4.66 4.11 3.91 4.74 5.81

Cavg 6.07 5.52 4.56 3.99 3.86 4.67 5.72

3s EER 20.53 16.42 14.66 14.16 13.69 15.44 21.02

Cavg 20.38 16.47 14.65 13.89 13.27 15.10 20.76

30s EER 3.35 3.59 2.85 2.59 2.30 2.41 2.69

Cavg 3.30 3.44 2.78 2.54 2.34 2.44 2.61

CZ 10s EER 10.03 8.56 6.75 6.12 5.31 6.35 7.51

Cavg 10.07 8.72 6.93 6.18 5.42 6.34 7.60

3s EER 25.20 22.36 19.94 18.23 17.95 19.54 25.05

Cavg 25.14 22.14 19.76 18.05 17.90 19.31 25.18

30s EER 2.07 2.48 2.03 1.77 1.58 1.79 2.42

DNN Cavg 1.93 2.44 1.86 1.62 1.49 1.61 2.34

-HMM EN 10s EER 6.65 5.44 4.54 3.97 3.86 4.24 5.66

Cavg 6.71 5.53 4.67 4.11 4.01 4.38 5.82

3s EER 19.58 16.35 14.24 13.88 13.53 15.07 19.68

Cavg 19.70 16.44 14.33 13.95 13.63 15.19 19.81

30s EER 2.44 3.35 2.70 2.26 2.05 2.09 2.62

Cavg 2.44 3.39 2.63 2.06 1.88 2.16 2.49

MA 10s EER 7.51 7.37 5.52 4.67 4.11 5.16 6.34

Cavg 8.23 7.41 5.60 4.69 4.19 5.60 6.19

3s EER 20.46 16.75 14.47 12.44 11.72 15.63 21.41

GMM Cavg 20.70 17.04 14.52 12.52 11.62 14.50 21.02

-HMM 30s EER 2.29 3.05 2.48 2.15 1.94 2.07 2.54

Cavg 2.30 2.91 2.30 2.01 1.84 1.97 2.45

EN 10s EER 7.39 6.54 5.21 4.57 4.04 5.11 6.14

Cavg 8.05 6.62 5.24 4.54 4.13 4.92 5.98

3s EER 20.75 16.47 14.53 12.82 12.08 15.40 20.83

Cavg 20.52 16.47 14.60 12.86 12.04 14.69 20.40

(including c0). To remove channel variability, cep-
stral mean subtraction and variance normalization are
both applied. The English phone recognizer employed
in our experiments are trained on 100h Switchboard
English corpus. There are 47 phone models for the
phone recognizer. The parameters and configuration
for English phone recognizer are similar to the Man-
darin phone recognizer.

Then, the decoder named HVite that is produced by
HTK [27] is used to produce phone lattices, and a choice of
open software (SRILM [28] and RNNLM [29]) is used to

produce feature supervector. Then, a popular classifier LIB-
LINEAR [30] is used to classify. Finally, we use LDA-MMI
algorithm [31] for score calibration.

4.2 Training, Test and Development Dataset

The results in the paper are reported for the test trials of
the 2009 National Institute of Standards and Technology
Language Recognition Evaluation (NIST-LRE2009). The
test data is comprised by 41,793 test segments of
23 languages for 30-s, 10-s, and 3-s nominal duration test.
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Table 3 Performance of DBA, NIST LRE 2009, DBA-M2, closed-set (EER and Cavg in %. The optimal values are shown in bold face).

Front-end Duration Baseline V = 6 V = 5 V = 4 V = 3 V = 2 V = 1

30s EER 2.43 2.34 2.22 2.16 1.96 1.85 2.31

Cavg 2.37 2.28 2.14 2.01 1.89 1.81 2.24

HU 10s EER 7.38 7.06 6.52 5.72 5.27 5.55 6.19

Cavg 7.24 7.01 6.41 5.71 5.28 5.49 6.10

3s EER 23.00 2.96 20.22 19.02 18.01 18.44 22.91

Cavg 22.61 20.95 20.20 19.00 18.20 18.52 22.90

30s EER 2.21 2.05 1.91 1.82 1.63 1.68 2.19

Cavg 2.00 1.92 1.80 1.68 1.48 1.54 2.03

ANN RU 10s EER 6.23 5.70 5.04 4.52 4.19 4.47 5.49

-HMM Cavg 6.07 5.60 5.05 4.49 4.19 4.44 5.38

3s EER 20.53 18.17 17.29 16.79 15.76 16.41 20.17

Cavg 20.38 18.12 17.21 16.49 15.76 16.26 20.51

30s EER 3.35 3.36 3.11 2.85 2.37 2.49 2.59

Cavg 3.30 3.33 3.02 2.80 2.29 2.49 2.53

CZ 10s EER 10.03 9.80 8.89 8.36 7.37 7.42 8.67

Cavg 10.07 9.84 9.11 8.36 7.47 7.51 8.96

3s EER 25.20 26.28 24.22 23.08 21.79 22.44 25.56

Cavg 25.14 26.37 24.37 23.11 21.57 22.35 25.64

30s EER 2.07 1.99 1.87 1.76 1.57 1.61 1.96

Cavg 1.93 1.83 1.79 1.52 1.39 1.54 1.81

DNN EN 10s EER 6.65 5.43 4.93 4.37 4.04 4.31 5.36

-HMM Cavg 6.71 5.53 5.01 4.43 4.11 4.41 5.48

3s EER 19.58 17.74 17.03 16.58 15.33 16.05 19.58

Cavg 19.70 17.87 17.14 16.73 15.56 16.19 19.74

30s EER 2.44 2.31 2.10 2.05 1.94 1.97 2.43

Cavg 2.44 2.32 2.12 1.95 1.83 1.88 2.31

MA 10s EER 7.51 6.45 5.68 5.11 4.63 5.16 5.84

Cavg 8.23 6.52 5.78 5.09 4.69 5.04 5.77

3s EER 20.46 18.50 17.53 16.02 15.12 16.10 20.04

GMM Cavg 20.70 18.65 17.54 16.16 15.11 16.04 19.87

-HMM 30s EER 2.29 2.16 2.08 2.01 1.87 1.90 2.41

Cavg 2.30 2.03 1.93 1.85 1.76 1.79 2.31

EN 10s EER 7.39 6.24 5.45 4.90 4.45 4.95 5.65

Cavg 8.05 6.24 5.45 4.82 4.42 4.90 5.52

3s EER 20.75 18.95 17.92 16.48 15.44 15.75 19.96

Cavg 20.52 18.97 17.79 16.58 15.38 15.96 19.84

Notice that in NIST LRE it is not allowed to exploit the
test data information, but NIST LRE corpus is famous and
widely used evaluation corpus in language recognition area,
which is convenient to compare the performance of LR
system. So here we use the NIST data to confirm the effec-
tiveness of discriminative boosting algorithm, which also
works in another corpus.

180,000 conversations selected from the Call-Home,
Call-Friend, OGI, OHSU and VOA Corpus are used in this
paper for training.

22,701 conversations are selected from the database pro-
vided by NIST for the 2003, 2005 and 2007 LRE and VOA
as development database.

4.3 Evaluation Measures

In this paper, the performance of language recognition sys-
tems is reported in terms of equal error rate (EER) and
average cost performance Cavg which is defined by NIST
LRE 2009 [12].
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Figure 3 DET curves of baseline and (DBA-M1)+(DBA-M2), (V =
3) system, NIST LRE 2009, ANN-HMM (HU+RU+CZ)+ DNN-HMM
(EN) + GMM-HMM (EN+MA) frontend.

5 Experimental Results and Discussion

5.1 Component Analysis of TrDBA

Table 1 shows the component of TrDBA of DBA-M1 in
different threshold. The error rate of the TrDBA database
will decrease with the increasing of the threshold, while the
number of the utterances also decreases. The error rate of
TrDBA using DBA-M2 will decrease because the low error
rate of the original training database Tr.

5.2 Performance of DBA System

We investigate the performance of DBA in this subsection.
We vary the threshold V and the EER and Cavg results

of DBA-M1 and DBA-M2 are listed in Tables 2 and 3,
respectively. From the results of Table 2, we can see that for
each fixed frontend, the EERs/Cavgs first decrease and then
increase with the decreasing of V , and the minimum occurs
at V = 3. Although when V = 6 the error rate of TrDBA is
lower than that of V = 3, but the smaller number of training
samples makes higher EER. In Table 3 the trend with respect
to V is similar to Table 2 but the minimum also occurs at
V = 3 because of the tradeoff of the number of training data
and error rate. When V=4,5,6 the error rate of the TrDBA is
very low, while the number of utterances in TrDBA is small
as the same time. The small number of training data makes
the deduction of performance of the system. When V=1,2
the number of utterances in TrDBA is enough for training but
the error rate of the TrDBA becomes higher, which also leads
to a rise of EER. But when V=3 it occurs a balance of the
error rate and the number of training data. So when V=3 the
language recognition system achieves the best performance.
In the subsection, we have seen that DBA-M2 outperformed
DBA-M1 at 30s test because of the plenty training utter-
ances, but DBA-M1 outperformed DBA-M2 at 10s and 3s
test because only use test data achieve higher robustness in
speakers, background noise, channel conditions.

5.3 Parallel Phone Recognizer Experiments

In the previous subsections, we have seen that DBA-M1 and
DBA-M2 outperformed PPRVSM method. In this section,
we will further fuse subsystems that uses parallel HU, RU,
CZ, MA and EN frontends through LDA + MMI score
fusion backend [31]. We only focus on the most challenging
case, i.e., PPRVSM versus (DBA-M1)+(DBA-M2) (V =
3). The detection error trade-off (DET) curves are showed

Table 4 Performance of PPRVSM and DBA systems, NIST LRE 2009, closed set, (DBA-M1)+(DBA-M2), V = 3 (EER/Cavg in %. The fusion
results are shown in bold face).

System 30s 10s 3s

HU 2.43/2.37 7.38/7.24 23.00/22.61

ANN-HMM RU 2.21/2.00 6.23/6.07 20.53/20.38

CZ 3.35/3.30 10.03/10.07 25.20/25.14

Baseline GMM-HMM EN 2.29/2.30 7.39/8.05 20.75/20.52

MA 2.44/2.44 7.51/8.23 20.46/20.70

2-6 DNN-HMM EN 2.07/1.93 6.65/6.71 19.58/19.70

fusion 1.11/1.16 2.73/3.70 12.37/12.76

HU 1.89/1.86 4.39/4.41 14.82/14.80

ANN-HMM RU 1.60/1.48 3.82/3.83 13.41/13.02

CZ 2.34/2.27 5.14/5.27 18.16/17.47

DBA GMM-HMM EN 1.93/1.81 4.11/4.22 12.38/12.03

MA 2.06/1.91 4.19/4.32 11.77/11.68

DNN-HMM EN 1.53/1.41 3.51/3.56 11.38/11.03

fusion 1.09/0.98 2.41/2.44 10.47/10.68
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in Fig. 3, and the EERs and Cavgs are listed in Table 4.
Table 4 shows the consistent performance improvement due
to changing from PPRVSM to DBA for both single and par-
allel frontends. For the parallel frontends and 30s, 10s and
3s test, the EER decreases from 1.11 %, 2.73 % and 12.37 %
to 1.09 %, 2.41 %, and 10.47 %.

5.4 Computational Cost

Let F , Mtraining and Mtest denote the dimension of the
phonotactic feature supervector of an utterance, the number
of utterances of training dataset and the number of utter-
ances of test dataset, respectively. And let C′

ϕ(f, N) denote
the computation cost of the mapping from x to ϕ(x) (here
F = f N

n ), C′
modeling(F, M) denote the computational cost

of modeling the languages, which relate to F and M . Then
the computational cost of the baseline system is

C′
baseline = (Mtraining + Mtest) · C′

ϕ

+C′
modeling(F, Mtraining) + MtestC

′
test (16)

where C′
test denotes the computational cost of test, and

C′
ϕ = C′

Pre-Processing + C′
FeatureExtract

+C′
Decoding + C′

ExpectCounting (17)

where C′
Pre-Processing, C′

FeatureExtract, C′
Decoding and

C′
ExpectCounting denote the computational cost of prepro-

cessing, feature extracting, decoding and expect counting,
respectively.

Let M ′|V =n denotes the number of test utterances that
have more than n votes, then the computational cost of the
DBA system is computed as:

C′
DBA = (Mtraining + Mtest) · C′

ϕ + C′
modeling(F,Mtraining)

+C′
modeling(F, (Mtraining + M ′|V =n)) + 2MtestC

′
test,

so

C′
DBA

C′
baseline

= 1 + C′
modeling(F, (Mtraining + M ′|V =n)) + MtestC

′
test

C′
baseline

(18)

Usually in PPRVSM, decoding and super vector product
is the dominant part, so C′

ϕ >> C′
modeling(F, (Mtraining +

M ′|V =n)) > C′
modeling(F, Mtraining) and C′

ϕ >> MtestC
′
test.

so

C′
DBA

C′
baseline

≈ 1 (19)

That means the DBA system almost takes no extra compu-
tation and achieves a 1.8 %, 11.72 % and 15.35 % relative
improvements respectively for 30s, 10s and 3s compared to
PPRVSM.

Table 5 Comparison of real time factor for PPRVSM and DBA, HU
frontend, NIST LRE 2009, 30-s test. CPU: Xeon E5520@2.27GHz,
RAM: 8GB, single thread. SV gen.: super vector generation, SV prod.:
super vector product.

System Decoding SV gen. SV prod.

PPRVSM 0.11 1.1 × 10−4 3.7 × 10−6

DBA 0.11 3.1 × 10−4 8.3 × 10−6

5.5 Real Time Factors

Next, we count the real time (RT) factors of each part and
list the results in Table 5. For the training stage, decoding
and super vector product is the dominant part, the com-
putational cost for DBA system is same to baseline. For
the test stage, decoding and super vector generation are the
dominant parts and the computational cost almost does not
increase for the DBA compared to PPRVSM.

6 Conclusions

In this paper, an approach of discriminative boosting algo-
rithm has been presented for language recognition. DBA
is an discriminative method using simple but effective cri-
terion based on boosting, which uses the complementary
information of different frontend and the discriminative
information of the test data. The performance improvements
demonstrate that DBA can learn the discriminative infor-
mation of the test data effectively. The experimental results
evaluated on NIST 2009 LRE task show that the relative
improvements of the proposed DBA are 1.8 %, 11.72 %
and 15.35 % for 30s, 10s and 3s over traditional PPRVSM
approach respectively.
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