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Virtual Reality Robot-Assisted Welding Based
on Human Intention Recognition
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and YuMing Zhang , Senior Member, IEEE

Abstract— We propose an innovative approach to enhance
welding operations by using a cyber-physical system (CPS)
with layered architecture and enabling a robot to be effectively
operated by its commanding human. This article focuses on the
recognition of the commanding human’s intention that should
be executed by the robot. To this end, a virtual reality (VR)
system based on the HTC Vive is used to create a remote
virtual welding environment. Human hand movement speed data
is collected and used to train a hidden Markov model (HMM)
using the Baum-Welch algorithm. The Bayesian information cri-
terion (BIC) is applied to determine the number of hidden states.
The state occupancy probability distribution (the probability of
each state at a given time) is estimated based on the human
hand movement speed sequence using the forward algorithm.
The human intention, defined as the intended movement in
this article, is then estimated as the statistical expectation of
the observable variables. Using the proposed human intention
estimation algorithm, the intended movement recognized from
the raw movement data is smoother, which is preferable in
welding tasks. A 6-DoF industrial robot, UR-5 with a custom
gas tungsten arc welding (GTAW) torch installed, works as
the final performer of the welding jobs. The robot receives
the intended movement data from the HMM and uses this to
assist the human welding operators. Welding experiments have
been conducted both with and without the proposed human
intention recognition (IR) algorithm. The results show that
the robot can help the operators complete welding tasks with
better performance using the proposed IR system, supporting the
effectiveness of the proposed VR robot-assisted welding system.

Note to Practitioners—Welding is not only labor-intensive
but also requires real-time adaption to the process, which is
challenging for robots/machines but relatively straightforward for
humans. Using a human commanded robot to perform welding
can liberate humans from laborious operations and hazardous
environments. To this end, a virtual reality (VR) system is used
to create a virtual welding environment for a human to view
the process remotely and for a human to pass his/her resultant
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adaptation to the robot through hand movements. However, hand
movements do not always fully represent the intended adaptation
of the commanding human, and the recognition of such human
intention is fundamental in such a proposed method. This article
established the mathematical framework for the recognition of
the human intention and, thus, the foundation for effective
assistance of robots to humans.

Index Terms— Cyber-physical systems (CPSs), hidden Markov
models (HMMs), human intention recognition (IR), robot-assisted
welding, virtual reality (VR).

I. INTRODUCTION

WELDING robots have been widely used in industry and
account for over 50% of industrial robots in the United

States and globally [1]. However, these robots are typically
only effective for structured, large-volume welding tasks con-
sidering the cost, both in economics and time. In unstructured
and small-volume manufacturing, human welders currently
still play an important role. However, they are often exposed
to hazardous agents, such as fume and radiation [2]. Moreover,
we are facing a substantial shortage of welders, especially
highly skilled ones, according to the American Welding Soci-
ety (AWS) [3]. Assisting less skillful welders to accomplish
welding tasks well has become an urgent problem in industrial
manufacturing. Many other complex operations also face a
similar problem: human physical limitations constrain perfor-
mance and efficiency, but human judgments are critical for
operation success. Developing robot-assisted systems is an
effective solution to such a problem [4].

A few robot-assisted surgery systems have been developed
for a variety of surgeries [5]–[9] and commercialized success-
fully [10], [11]. Surgeons operated robots through different
interfaces, such as a keyboard, a joystick, and a haptic con-
troller [12]–[15]. Skills in operating through these interfaces
were gained through practices. Rehabilitation is another area
where robot-assisted systems are used widely. With exoskele-
tons and end-effectors, robot-assisted rehabilitation systems
have been developed to provide precise, quantitative, and
scientific rehabilitation training to the disabled [16]–[18].
By using these assistant-robots, patients can receive 1) pre-
defined mandatory training exercise, 2) active support when
patients have the will but find it difficult to move, and
3) rehabilitation data analysis and feedback from robots [19].
In industry, robot-assisted systems have also been developed
for small-batch manufacturing and applied in arc welding, spot
welding, and kitting [4], [20], [21]. By taking advantage of
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assistance from robots, the required skill level from human
operators is greatly decreased, such that a novice operator
may have the ability to finish relatively complex manufacturing
tasks with a good performance.

In previous robot-assisted welding systems [4], [20], the
robot reduced sharp movements of welding torch through an
added impedance. A human and a robot worked together on-
site, and the human was still subject to hazardous agents. There
are other human–robot welding systems [22], [23] that allow
a human to control the robot remotely. However, the robots
only act as puppets with no intelligence, i.e., just copying the
trajectory of human commands, even if the human makes mis-
takes. An ideal robot-assisted welding system should possess
at least the following two characteristics: 1) remote operation
to protect humans from dangerous welding environment and
2) intelligence to help correct human operation faults, espe-
cially from novice welders.

Understanding and recognizing human intention is the foun-
dation to correct possible operation errors from the command-
ing human to effectively operate robots to perform for the
human [24]. Linear dynamic models, including state models
and Kalman filtering, have been proposed to model human
intention and been applied to power-assisted rehabilitation
robots [25], [26]. In order to characterize the nonlinearity
in human intention/action, nonlinear models, including neural
networks (NNs) and support vector machines (SVMs), have
also been proposed to recognize the human intention for appli-
cations, such as limb trajectory tracking for robots [27], [28].
However, such deterministic models, linear or nonlinear, can-
not characterize the innate randomness of human actions.
To cope with this issue, some researchers have proposed to
use hidden Markov models (HMMs) [29]–[34] or layered
HMMs (LHMMs) [35]–[37], which contain multiple levels of
HMM [38] to recognize the human intention. Two kinds of
ideas have been proposed as follows.

1) When the human intention is defined as a task, each task
is characterized as an HMM. Then, the human intention
recognition (IR) problem is equivalent to the probability
computation of certain sequences with the appropriate
HMM [29], [30].

2) When the human intention is defined as a subtask,
it is usually taken as the hidden state, and an entire
human action sequence is modeled as an HMM. Then,
the human IR problem can be stated as the hidden state
estimation [32]–[34]. Both of these problems can be
solved using the forward-backward algorithm [39].

To meet the requirement on the characteristics of an ideal
robot-assisted welding system as analyzed above, i.e., both
remote control and intelligence, we propose a virtual real-
ity (VR) robot-assisted welding system based on human IR.
This system applies customer-grade VR hardware as the inter-
face between humans and robots. With information commu-
nicating bi-directionally via the VR system, robots can assist
humans remotely. The need for on-site operation is eliminated,
and the operation safety is improved. The proposed human IR
component has not only some similarities to previous work but
also some new aspects. In our application, human intention
is defined as the intended human hand motion. In an ideal

Fig. 1. Schema of VR robot-assisted welding system.

manual welding process, welding torch moves in accordance
with the human intended movement. Due to the natural and
inevitable vibrations of human hands, it is hard or even
impossible at all for a human to control the welding torch as
intended, especially for novice welders. Human hand stability
training is typically an important part of welder training.
We use the HMM-based concept of state occupancy probabil-
ity to model instable randomness and apply an HMM-based
method to recognize the human intention, using human hand
movement speed as observable variables. For our proposed
method, the welding tasks cannot be decomposed of subtasks
in advance. Thus, the hidden state number cannot be pre-
identified. To address this problem, we propose to use the
Bayesian information criterion (BIC) to identify the number
of hidden states in the HMMs. Training the HMM using the
Baum-Welch algorithm, the hidden state occupancy probability
distribution is then estimated using the forward algorithm. The
robot executes intended actions determined from the statistical
expectation of observable variables. Experiments show that
with assistance from robots by recognizing human intention,
humans can finish welding tasks with better performances.
This verifies the effectiveness of the proposed VR robot-
assisted welding system.

In Section II, the details of system configuration, cyber-
physical model, and specialties of developed VR robot-assisted
welding systems are presented. Section III discusses the prin-
ciples of HMMs, followed by the details of HMM training
in Section IV. Section V presents the proposed human IR
algorithm. Robot-assisted welding experiments are conducted
in Section VI, and conclusions are summarized in Section VII.

II. SYSTEM CONFIGURATION

A. Hardware

The schematic diagram and configuration of the developed
VR robot-assisted welding system are shown in Figs. 1 and 2,
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Fig. 2. Configuration of VR robot-assisted welding system. (a) Human is
undertaking to weld remotely and virtually. (b) Robot is assisting human
undertaking welding tasks on site.

Fig. 3. Cross-section dimension of workpieces and the initial position of the
welding torch.

respectively. In this system, human hand movement data is
collected via the motion-tracked handle, which is a part of
the customer-grade VR system, HTC Vive. This commercial
VR system can track handles and the headset with submil-
limeter accuracy in room-scale space in real-time (with 90 Hz
refresh rate) by capturing multi-markers on their surfaces and
using embedded inertial measurement units (IMUs). By using
motion-tracked headsets, the 3-D augmented virtual scene is
shown to the operator via a head-mounted display (HMD).
The gas tungsten arc welding (GTAW) torch is installed on
a 6-DoF collaborative industrial robot, UR-5, and is powered
by a welding power supply, Liburdi Pulsweld P200. V-groove
workpieces whose cross section dimension is shown in Fig. 3
are welded with direct current electrode negative (DCEN).

B. Layered Cyber-Physical Model

The cyber-physical model of the proposed robot-assisted
welding system is shown in Fig. 4. Four spaces, including user

Fig. 4. Layered cyber-physical model of developed VR robot-assisted
welding system: U, V, R, T are four spaces; M is mapping function in the
same or adjacent space(s).

space U , virtual space V , robot space R, and tool space T ,
coexist with the layered architecture. Via virtual space V and
robot space R, the objects in user space U and tool space T
map to each other. In one working cycle, the human operator
observes the augmented virtual scene EU from the headset and
takes actions H U correspondingly based on her/his welding
skill modeled as MU

E H . Then H U is mapped to virtual space
as H V via motion-tracked handles. H V includes the requested
welding current and welding torch movement. In robot space,
the robot moves in accordance with the intended movement
recognized from H V to assist the human operator. In addi-
tion to the movement of six independent joints, the robot
action H R also includes requesting the welding current for
the welding power supply. In tool space, the actions of the
welding torch H T are its movement attached to the robot
and the application of the requested welding current from the
welding power supply. A physical process, GTAW modeled
as MT

H E maintains and maps welding torch behaviors to
welding feedback information ET (arc voltage and current),
which is transmitted to the robot space. Robot information
E R includes robot pose and information transmitted from
tool space. In virtual space, all information is integrated
to render a 3-D augmented virtual environment E V . E V

includes welding robot pose and some augmented information,
including arc status, welding current, welding voltage, arc
length, and travel speed. Via headset, the human observes
the augmented virtual scene EU , which is a 2-D projection
of the E V based on the position and orientation of the
headset.

The interface between the user space and the virtual space
is the VR system, where information flows by motion-tracked
handles and the headset. Virtual space and robot are connected
by the local area network (LAN) using TCP/IP protocol. Robot
space and tool space are connected via analog I/O. The
entire system is developed in Unity, a popular game engine
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Fig. 5. Schema for HMM.

supporting almost all mainstream commercial VR systems,
which is programmed with C# language.

C. System Specialties

The system has three unique characteristics designed to
complete welding tasks using robotic assistance.

1) Spatial separability: by using the VR system as an inter-
face, a human can work with the robot remotely. This
spatial separability can protect the operators from onsite
dangers, such as high pressure, high temperature, fumes,
and radiations associated with the welding processes and
environments.

2) Immersive ability: the human operators are immersed
in the 3-D virtual environment generated from the
information sensed from the working site. This avoids
information missing due to spatial separability.

3) Operative ability: only the pose of welding torch matters
for the welding process, and this can be fully accom-
plished by the 6-DoF robot. Moreover, by using the
handles whose weight is much smaller than real welding
torches, the human operators can undertake welding
tasks easily, intuitively, and naturally.

III. PRINCIPLES OF HMMS

HMMs are statistical models for sequential data, where
the latent state sequence is a Markov chain whose value
determines the distribution of the corresponding observable
variables. As shown in Fig. 5, Z = {z1, z2, z3, · · ·, zM } is
the set containing all possible state values zi , and M is the
total number of possible hidden states. The instantaneous latent
state s transits among Z with some probability characterized
as the state transition matrix AM×M where Aij ≡ P(sn =
z j |sn−1 = zi ). With each state, the observation variable o has
an emission probability distribution P(o|zi ) characterized as
�. The initial state probability vector κ = [κ1, κ2, · · ·, κM ]T ,
where κi = P(s1 = zi ), is HMM’s initial state distribution.
Then, an HMM is determined by the three-parameter set θ =
{κ , A, �} completely. In our HMM, human hand movement
speed ν = [νx , νy , νz]T is observable variable and � is
assumed to be Gaussian distribution

P(o|zi ) = 1

2π |�i | exp

(
−1

2
(o − μi )

T �−1
i (o − μi )

)
(1)

where μi is the mean value of the speed, and �i is a
covariance matrix. With expanding time domain, both latent
state sequence S and observable variable sequence O are
formed.

IV. MODEL IDENTIFICATION

A. Principles of Baum-Welch Algorithm

As discussed previously, only the observation o is observ-
able in our application while the latent state is unobserv-
able. The Baum-Welch algorithm is applied to estimate the
parameters of HMMs by finding the model parameters set θ
maximizing the sum of the log of the likelihood function of
all the observance sequences [40]

θ̂ = arg max
θ

(∑
O

log(O|θ)

)
(2)

where O is a single sequence. Then the parameters can be
identified by finishing the iterative expectation step (E step)
and maximization step (M step) in two steps:

(1) E step: Find the Q function

Q(θ, θold) =
∑

O

∑
S

(P(S|O, θold) log(P(O, S|θ))). (3)

From the properties of HMMs, P(O, S |θ) can be computed

P(O, S|θ) = P(s1|κ)(

NT∏
n=2

P(sn |sn−1, A))

NT∏
n=1

P(on |sn,�)

(4)

where NT is the length of state sequence S and observable
variable sequence O.

After substituting (4) into (3), Q is separated into three
parts: initial part QI , transition part QT , and emission part QE

Q(θ, θold) =
∑

O

(QI + QT + QE ) (5)

QI =
M∑

i=1

(γ (si
1) log(πi )) (6)

QT =
NT∑

n=2

M∑
i=1

M∑
j=1

(ξ(si
n−1, s j

n ) log(Aij )) (7)

QE =
NT∑

n=1

M∑
i=1

(γ (si
n) log(P(on |�i )) (8)

where

γ (si
n) = P(sn = zi |O, θold) (9)

ξ(si
n−1, s j

n ) = P(sn−1 = zi , sn = z j |O, θold). (10)

M step: Maximize the Q(θ ,θold) with respect to θ :
Since Q is a continuous function of θ , its value is maxi-

mized when the partial derivative of Q with respect to θ is 0

∂ Q(θ, θold)

∂θ
= 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Q(θ, θold)

∂κi
= 0

∂ Q(θ, θold)

∂ Aij
= 0

∂ Q(θ, θold)

∂μi
= 0

∂ Q(θ, θold)

∂�i
= 0.

(11)
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The iterative learning algorithm for the HMMs can be given
as

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κi =
∑

O γ (si
1)∑

O
∑M

i=1 γ (si
1)

Aij =
∑

O
∑NT

n=2 (ξ(si
n−1, s j

n ))∑
O

∑M
k=1

∑NT
n=2 (ξ(si

n−1, sk
n ))

μi =
∑

O
∑NT

n=1 (γ (si
n) · on)∑

O
∑NT

n=1 γ (si
n)

�i =
∑

O

∑NT
n=1 (γ (si

n) · (on − μi )(on − μi )
T )∑

T
∑NT

n=1 γ (si
n)

.

(12)

Additionally, the unknown variables γ and ξ can be computed
using the forward-backward algorithm:

The forward probability αi
n and the backward probability

β i
n are defined as

αi
n ≡ P(o1, o2, . . . , on, sn = zi ) (13)

β i
n ≡ P(on+1, on+2, . . . , oNT |sn = zi ) (14)

where both αi
n and β i

n can be computed using the dynamic
programming (DP) algorithm⎧⎪⎪⎨

⎪⎪⎩
αi

1 = κi P(o1|zi )

αi
n+1 = (

M∑
j=1

(αi
n+1 A ji))P(on+1|zi )

(15)

⎧⎪⎪⎨
⎪⎪⎩

β i
NT

= 1

β i
n−1 =

M∑
j=1

(Aij β
i
n P(on |z j )).

(16)

Following this, both γ and ξ can be computed explicitly:
γ (si

n) = P(sn = zi |O, θold)

= P(sn = zi , O|θold)

P(O|θold)
= αi

nβ i
n∑M

i=1 αi
NT

(17)

ξ(si
n−1, s j

n ) = P(sn−1 = zi , sn = z j |O, θold)

= P(sn−1 = zi , sn = z j , O|θold)

P(O|θold)

= αi
n−1 Aij P(on |zi )β

j
n∑M

i=1 αi
NT

. (18)

Together, these algorithms allowing estimation of all the
variables needed to identify the parameters of the HMMs have
been derived explicitly.

B. Data Collection

The experimental task consists of a user (one of the
authors) using motion-tracked handles to implement a pulse
backing welding task eight separate times, generating eight
training sequences. The applied welding parameters are shown
in Table I. The position of the human hand is sensed with
a sampling frequency of 10 Hz. Hand speed is determined
based on the position data. In total, eight observable variable
sequences with 6585 data points are used to train models.

TABLE I

WELDING PARAMETERS APPLIED

C. Identification of Hidden State Number

As discussed in Section I, unlike previous methods for
modeling human actions using HMMs, the number of hidden
states cannot be identified in advance. Therefore, the BIC is
used to identify the best number of hidden states. For HMMs,
the BIC can be computed as

B IC = −2 · log(L) + k · log(n) (19)

where the L is the maximized value of the likelihood of
observable data with the model

L = max
θ

(∏
O

P(O|θ)

)
= max

θ

(∏
O

(
M∑

i=1

αi
NT

))
(20)

k is the number of independent parameters learned in HMMs,
and n is the total number of data points, 6585 in our
application.

For our application, the emission probability is assumed to
have a Gaussian distribution and k is the sum of the learned
number of the four independent parameters

k = kκ + kA + kμ + k� (21)

kκ = M − 1 (22)

kA = M·(M − 1) (23)

kμ = d · M (24)

k� = d · (d + 1) · M/2 (25)

where M is the number of hidden states, and d is the data
feature dimension. In our application, o = ν = [νx , νy , νz]T

which is the hand movement speed, and therefore, d = 3.
Thus

k = M2 + 9M − 1. (26)

Using the algorithm presented in part A, the HMMs are
trained with fully random initial model parameters. In order
to decrease the effect of randomly choosing initial model
parameters, models with the same number of hidden states
are trained ten times. Finally, the number of hidden states is
identified as 5 by computing and comparing scores and BIC
for each model. These results are shown in Fig. 6. The score of
each model is defined as the log of the likelihood of observable
data

score = log

(∏
O

P(O|θ)

)
=

∑
O

(
log

(
M∑

i=1

αi
NT

))
. (27)
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Fig. 6. Model evaluation with different number of states.

Fig. 7. Convergence in model training.

D. Model Training

By taking the number of hidden states as 5, the HMM
training is repeated ten times with initial parameters chosen
randomly. The one with the highest score is chosen as the final
model. The iterative process is shown in Fig. 7. The conver-
gence rate is defined as the difference of the log-likelihood of
observable sequences compared with the last iteration. It can
be found that the model converges after ∼100 iterations.

V. HUMAN INTENTION RECOGNITION

A. Principles

Unintentional actions exist in the operation/demonstration
of commanding humans because of physical limitation that
reduces the controllability and the lack of the needed degree of
skills. The robot should, thus, execute the intended operations
recognized. The waveform of the welding current is not easy
to adjust in real-time by a human as the tool/torch. Hence,
in our case, the former is pre-determined and fixed, and the
latter is real-time adjusted as in manually operated welding
process.

We define human intention as the intended hand speed v̄.
The problem can, thus, be stated as that of estimating the
current/present intended movement speed v̄n from the raw
moving speed sequence. This problem can be addressed in
two steps.

1) State Occupancy Probability Computation: The state
occupancy probability vector ζn characterizes the probability

TABLE II

STATISTICAL INFORMATION FOR TESTING EXPERIMENTS

of occurrence of each hidden state zi at a given time

ζn = [ζ 1
n , ζ 1

n , . . . , ζ M
n ]T (28)

ζ i
n ≡ P(sn = zi |o1, o2, . . . , on). (29)

Here, each hidden state zi is considered as a “base state” and
the state at any time sn is estimated as the probability-weighted
mixture of base state zi . The probability vector ζn can be
computed based on the forward algorithm

ζ i
n = P(sn = zi , o1, o2, . . . , on)

P(o1, o2, . . . , on)
= αi

n∑M
i=1 αi

n

. (30)

2) Intended Movement Estimation: For each hidden state zi ,
the ui is considered as its intended movement. The intended
movement at each time is estimated as the statistical expecta-
tion of current observable variable based on state occupancy
probability vector ζn

ῡn =
M∑

i=1

(ζ i
n · μi ). (31)

B. Testing Verification

Another movement sequence is generated by the same
person with the same experimental configuration to test the
effectiveness of the proposed human intention algorithm. The
recognized intended speed results and its statistical infor-
mation are shown in Fig. 8 and Table II. From Fig. 8
and Table II, it can be found that the intended movement
estimated using the HMM approach is much smoother, with
significantly lower standard deviation and near-zero means in
the y- and z-directions. Smoother movement is more preferred
for welding: with consistent motion in the direction of travel
and little or no motion in the lateral and vertical directions.
As can be seen, in the primary direction of travel along the
x-axis, the recognized intended travel speed achieves a mean
close to the true one and a decreased standard deviation. In the
lateral y-axis and vertical z-axis direction, a near-zero mean
and decreased standard deviation are also achieved.

An interesting phenomenon happens in the z-direction. The
raw speed data has the largest variance, but the intended
speed data has the smallest variance. This indicates that the
z-direction movement has the highest degree of randomness,
i.e., there is no obvious intention transition for humans in the
z-direction movement compared with the other two directions.
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Fig. 8. Human IR result (a) x-direction in which the welding torch moves
along, (b) y-direction where welding torch deviates from weld seam, and
(c) vertical z-direction.

That makes sense since the x-direction is the primary welding
direction, for which the human operator has a clear intended
travel speed, and the y-direction is the weld seam position
where the operator intends to track. The z-direction is the
vertical direction where there is no strict regulation for the
operator as long as the continuity of the welding process
is maintained. Furthermore, the vertical movement is much
harder to control than horizontal movement for humans due
to internal muscle structure.

VI. ROBOT-ASSISTED WELDING EXPERIMENT

The trajectories of the robot with and without using the
proposed human IR algorithm are shown in Fig. 9. The cor-
responding welded workpieces using the same welding para-
meters in Table I are shown in Fig. 10. Based on the human
operator movement and weld bead appearance, the welding

Fig. 9. Robot trajectory (a) x-direction, (b) y-direction, and (c) z-direction.

operation can be separated into five stages: I (0–20 s);
II (20–40 s); III (40–48 s); IV (48–57.5 s) and V (57.5–65 s).

In stage I, the welding process is relatively steady; there is
no big difference between the raw movement and the intended
movement such that the corresponding weld bead appearances
are similar. In stage II, the position of the tungsten electrode
deviates from and returns to the weld seam, with a maximum
seam deviation of ∼8 mm. This causes the heat from the arc to
the workpiece to deviate from the weld seam. This deviation
results in a critical welding failure (incomplete weld). The
seam deviation comes from the accumulation of the negative
speed in the lateral y-axis at 21–27 s. This can be considered
as an unintended operation fault by the operator. When the
operator realizes this problem via the HMD, he/she tries to
correct by adjusting the position of the welding torch to track
the weld seam again (27–40 s). When using the intended
operation recognized from the proposed HMM-based human
IR algorithm, the sharp change of operation speed in the y-axis
during stage II is suppressed. The maximum seam deviation
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Fig. 10. Welded workpieces (a) front side without human IR, (b) backside
without human IR, (c) front side with human IR, and (d) backside with
human IR.

is reduced to ∼2.5 mm, which still results in the incomplete
penetration defect, but the degree of harm has been decreased,
and the incomplete penetration is often acceptable except for
critical cases.

In stage III, the travel speed along the x-axis is too low,
resulting in high total energy input and eventual burn-through
welding failure. The opposite problem occurs in stage IV,
with high travel speed resulting in low total energy input
and incomplete penetration. Using the proposed algorithm,
the variance in travel speed is much lower, and both the
stage III low-speed and stage IV high-speed welding faults
are eliminated.

In stage V, the trajectory of the tungsten electrode along
the vertical z-axis vibrates above the desired center position
resulting in a longer arc than desired, with a maximum arc
length of ∼12 mm compared with an initial arc length of
5 mm. As shown in Fig. 11, this causes a strong divergence
of the arc in the workpiece. The arc heat to workpiece spreads
so much that the energy density is insufficient for full fusion
of base metal, causing an incomplete penetration defect. After
using the proposed algorithm, the variation above the desired

Fig. 11. Schema of arc shape with the vertical movement of the welding
torch. Red dash: original shape. Black solid: arc diverges with arc lengthening.

Fig. 12. Principle of robot-assisted manual welding (a) without human IR
and (b) with human IR.

z-axis position is suppressed, and the maximum arc length is
maintained at ∼6 mm and not creating a welding fault.

Fig. 12 illustrates how the human IR helps improve the per-
formance. The raw human operation OT includes the intended
operation OI and erroneous one OE . Without the IR, the robot
(modeled as R) manipulates the movement of the welding
torch by copying OT . Both OI and OE affect the welding
(modeled as R) to produce W (OI ) and W (OE ), where the
former is desired, but the latter is not. After adding the human
IR component IR, as shown in Fig. 12(b), the recognized
intended operation ÔI contains OI and residual part OR

ÔI = OI + OR . (32)

Via the same robot and welding system as modeled by R and
W , the final welding results are now controlled by OI and OR .
The goal of this article for human IR is to minimize OR

such that OR � OE . In our welding experiments without
human IR, the generated weld faults (such as incomplete
weld and burn-through) can be considered as W (OE ) due
to erroneous human operations. After using the proposed
human IR algorithm, the remaining weld defects (such as
incomplete penetration) are due to OR . For an effective human
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IR algorithm such that OR � OE , W (OR ) must be much
smaller than W (OE ) as R and W are unchanged.

VII. CONCLUSION

This article has introduced a CPS with a layered archi-
tecture, which allows robots to assist human operators in
performing welding and improve performance. For protecting
operators from onsite dangers, a VR environment has been
created using customer-grade VR hardware as the operating
interface to separate humans and robots spatially. A human IR
algorithm is developed based on HMMs using hand velocity as
observable variables. The number of hidden states is identified
using BIC, and the HMM is trained using the Baum-Welch
algorithm. Intended movement is estimated using state estima-
tion and expected observable variable estimation. A welding
experiment based on this method has been implemented. The
results indicate that human welding operators have substan-
tially better performance when using the proposed VR robot-
assisted welding system.
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