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ABSTRACT 
LEAST-SQUARES MAPPING FROM KINEMATC DATA TO ACOUSTIC SYNTHESIS PARAMETERS FOR 

REHABILITATIVE ACOUSTIC LEARNING 

 

Xiangyu Zhou 

Marquette University, 2015 

 

Thousands of people suffer from dysarthria resulting from neurological injury of the motor 
component of the motor-speech system, and need to rely on alternative methods to 
communicate in daily life, such as body language or text-to-speech [1] . However, there are 
currently very few effective rehabilitative therapies for helping these patients improve their 
speech. Because of this, research is needed to develop better rehabilitative therapies. One such 
area of research is the use of involuntary acoustic learning. The Speech and Swallowing lab at 
Marquette University has an Electromagnetic Articulography (EMA) system to collect kinematic 
data and a software system called Rehabilitative Articulatory Speech Synthesizer (RASS) that is 
able to create the necessary synthesized acoustic feedback to study the effects of these kind of 
therapies.   

One key aspect of the RASS system is the mapping from kinematic sensor data to acoustic 
synthesis parameters. This is a complex problem that depends on individual subject anatomy 
and vocal tract patterns. Currently, the RASS system uses a simple piecewise linear method, but 
it would be advantageous to improve this to be more accurate across a wider range of vocal 
configurations. . The goal of the research work presented here is to develop and test new 
approaches for kinematic to synthesis mapping, in the hopes of improving the quality and 
intelligibility of the RASS system. 

Results indicate that the new mapping gives reduced mapping error. Ultimately, the impact of 
this work is that it provides researchers with a more accurate method for mapping kinematic 
data to synthesis parameters. 

 

 

 
  

http://en.wikipedia.org/wiki/Brain_damage
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CHAPTER 1 Introduction 

1.1. Introduction 
Thousands of people suffer from dysarthria resulting from neurological injury of the motor 
component of the motor-speech system, and need to rely on alternative methods to 
communicate in daily life, such as body language or text-to-speech [1]. However, there are 
currently very few effective rehabilitative therapies for helping these patients improve their 
speech. Because of this, research is needed to develop better rehabilitative therapies. One such 
area of research is the use of involuntary any acoustic learning. For example, record the 
articulatory kinematics of dysarthric speakers, and using modified kinematic-driven acoustic 
feedback，we can create involuntary sensory-motor learning. The Speech and Swallowing lab 
at Marquette University has an Electromagnetic Articulography (EMA) system to collect 
kinematic data and a software system called Rehabilitative Articulatory Speech Synthesizer 
(RASS) that is able to create the necessary synthesized acoustic feedback to study the effects of 
these kind of therapies.   

One key aspect of the RASS system is the mapping from kinematic sensor data to acoustic 
synthesis parameters. This is a complex problem that depends on individual subject anatomy 
and vocal tract patterns. Currently, the RASS system uses a simple piecewise linear method, but 
it would be advantageous to improve this to be more accurate across a wider range of vocal 
configurations. . The goal of the research work presented here is to develop and test new 
approaches for kinematic to synthesis mapping, in the hopes of improving the quality and 
intelligibility of the RASS system. 

1.2. Electromagnetic Articulography 
The RASS system is based on using Electromagnetic Articulography (EMA) to collect the 
kinematic movement data of sensors placed on the tongue, lips and jaw of human subjects. The 
EMA system software includes automated correction of head movement so that the data is 
with respect to the subject, with average sensor tracking errors below 0.5mm for dynamic 
tracking [2].The data is then additionally processed to reference it to each individual subjects’ 
articulatory space, using a calibration process based on biteplate data as described in more 
detail in Section 2.2.4. Acoustic data is also collected through the EMA system and synchronized 
to the kinematic data, although it is not necessary for use of the RASS system.  

1.3. RASS 
The Rehabilitative Articulatory Speech Synthesizer (RASS) used in the Speech and Swallowing 
lab at Marquette University is a real time system which perturbs the acoustic data in the 
formant space and returns the perturbed speech back as biofeedback to the subject in real time. 
It receives streaming data from the EMA system and interacts with the experimenter and the 
real time VTDemo system (Vocal Tract Acoustics Demonstrator) which synthesizes the acoustics. 
The RASS system is described in more detail in Section 2.1. 

http://en.wikipedia.org/wiki/Brain_damage
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The VTDemo system is an interactive articulatory synthesizer, originally created by Mark 
Huckvale[2], based on the program VTCALCS[2] by Satrajit Ghosh at Boston University. The 
synthesizer model itself is based on the work of Shinji Maeda [3]. VTDemo takes a set of seven 
vocal tract shape parameters taken from Maeda’s work and converts them into a vocal tract 
area function which is then used to filter a voicing signal form a modeled voice source and allow 
real-time synthesis of the acoustic signal as the articulatory parameters. 

In order to synthesize an acoustic signal, the VTDemo synthesis component first requires these 
seven synthesis parameters as input. These parameters must be estimated from the kinematic 
data of the subject in order to connect the EMA system and the synthesis system. The current 
system uses kinematic data from four sample vowels as well as the overall dynamic range of 
motion, and creates a simple three-segment piecewise linear mapping that maps selected 
sensor positions to individual synthesis parameter values.  This is an approximate process and 
the mapping must often be hand adjusted to be useable in practice. 

Once the speech is synthesized, the Audapt software adjusts the formant values as desired for a 
particular subjective experiment, and resynthesizes the data a second time. This allows direct 
control over the acoustics of patient’s speech in real time.  In rehabilitative studies, this 
modified signal is returned to the subjects through headphones and the resulting involuntary 
change to the subject’s acoustic response is recorded for analysis. This experimental process is 
shown in Figure 1 below. 

 

Figure 1: The RASS system 

1.4. Proposed Approach 
The goal of this work is to create an improved kinematic-to-synthesis parameter mapping 
method to connect the kinematic EMA system to the RASS synthesizer. The proposed approach 
for this is based on a least-squares mapping concept where training data from the subject is 
used to build a multiple-input multiple-output mapping model. 
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The first step of the new approach is to develop higher quality articulatory features from the 
raw kinematic data. To do this, a mesh model of the subject’s palate is estimated from palate 
trace data collected for each subject. This allows for the computation of sensor-to-palate 
distances, giving articulatory features that directly relate to vocal tract opening size.  

Using these improved articulatory features, calibration data from multiple vowels and 
consonants is used to create a data matrix representing the relationship between articulatory 
features and acoustics. This is then input to a least-squares algorithm to build a linear 
regression model which maps input values of articulatory features to output synthesis 
parameters across the entire acoustic space. 

The new approach is compared to several prior mapping approaches using mean square error 
method. For evaluating accuracy and effectiveness, the experimental work is divided into two 
parts, single phoneme reconstruction and sentence reconstruction. To assess the system, 
articulatory features are computed for individual phonemes, and then mapped to synthesis 
parameters through the linear mapping equation. Mean square error between synthesis 
parameters from the new approach and from previous approaches can then be directly 
compared. In addition to the mean square error, we also compare the acoustic results between 
new and prior approaches using Perceptual Evaluation of Speech Quality (PESQ) standard.    

1.5. Research Objectives 

Through the proposed kinematic mapping structure, we can re-express participant’s 
articulatory movements and use them to support the study of sensorimotor relationships and 
further our understanding of feedforward and feedback mechanisms in speech motor control 
[4] . How to process these kinematic data and relate them to the needed synthesis parameters 
is one of the key steps for the RASS system. In this thesis, we introduce a new method for the 
mapping between kinematic data and synthesis parameters by using articulatory features with 
the three dimensional virtual vocal tract. The new method is compared to several prior 
methods to show the benefits of the newly proposed approach. Overall, the new mapping 
method has the ability to create an accurate linear relationship between kinematic speech data 
and synthesis parameters. 

1.6. Overview of Thesis 
The remainder of this thesis is organized into the following sections: Introduction (Chapter one), 
Background (Chapter two), Palate Mesh creation (Chapter three), Kinematic to Synthesis 
Parameter Mapping (Chapter four), and Conclusion (Chapter Five). 
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CHAPTER 2 Background 
In this chapter, fundamental concepts and technical background that relate to the articulatory 
to synthesis mapping problem will be introduced. This includes an overview of the RASS system 
and its components, details of the EMA system itself, the underlying model of the VTDemo 
synthesizer, and a brief overview of the Audapt acoustic modification framework. In addition, 
prior methods used in RASS for articulatory to synthesis mapping will be reviewed in detail. 

2.1. Overview 
Articulatory models describe the vocal tract shape by means of a small number of control 
parameters [5]. Thorough these parameters, synthesizer parameter may be determined values 
that represent vocal tract function to generate corresponding acoustic waveforms. In the 
Rehabilitative Articulatory Speech Synthesizer (RASS) system, articulatory variables computed 
from sensor position describe the shape of the vocal tract which are translated to synthesis 
parameters to acoustic feedbacks. Figure 1 in Chapter 1 illustrates the three components of this, 
which include the NDI Wave system, the mapping system which maps kinematic to synthesis 
parameters, and the VTDemo system. The NDI Wave system is used to collect kinematic data in 
real time, while the mapping system maps the kinematic data to synthesis parameters. After 
mapping, the generated synthesis parameters are used as inputs to the VTdemo system to 
generate an acoustic waveform, which is then modified by Audapt software and returned to the 
subject via headphone. 

 
Figure 2 shows the detailed functional decomposition of the RASS system and its functionality.  

 

Figure 2:  Software structure of the RASS system 
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2.2. NDI Wave system and Data collection 
The Northern Digital (NDI) Wave system is used to collect kinematic speech position data. Data 
records typically include a bite-plate record, a palate trace record and multiple kinematic 
records. For each of these records, the subject wears “orientation” glasses that have a single 
6DOF (degree of freedom) reference sensor for the purpose of head correction and coordinate 
space translation.  
 

2.2.1 NDI Wave system 

The NDI Wave system is an electromagnetic articulography (EMA) speech research system 
which tracks real-time articulatory orofacial movements and kinematics [6]. It includes: 

• Field Generator 
• Mounting arm 
• System Control Unit 
• System Interface Units 
• Microsensors 
• Reference Sensor 
• WaveFront™ data collection and real-time viewing software, with audio signal 

synchronization functionality 
• Audio synchronization cable 
• Palate probe 

 
The NDI Wave system supports three dimensional (3D) tracking of 5 or 6 degree-of-freedom (5-
DOF, 6DOF) sensors in a static electromagnetic field. This is based on the basic principle of two-
dimensional magnetometer systems [7]. Through a static field generator, a signal can be 
induced in sensors via electromagnetic induction.  Through this the sensor position and 
orientation can be captured. Figure 3 shows the layout of NDI Wave system. 
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Figure 3: Layout of the NDI Wave system 

2.2.2 Sensor placement 

A typical configuration for the RASS system includes 6 articulatory sensors, one 6 degree-of-
freedom sensor and five 5 degree-of-freedom sensors. Figure 4 shows an example of these 
sensors placed on a human subject and Figure 5 shows the sensor placement inside subject’s 
mouth. 
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Figure 4: Sensor placement on a human subject 

 

Figure 5: 3D sensor placement 
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Specific placement includes: 

1. REF (not shown): Reference sensor, 6-DOF, placed on a plastic glasses frame 
approximately superficial to the intersection of the superior aspect of the nasal bone 
and the glabella of the frontal skull bone. The purpose of REF is for head correction and 
coordinate space translation; 

2. MI: Mandibular Incisor sensor, 5-DOF sensor, placed at the intersection of the central 
mandibular incisors (labial surface), abutting the enamel-gingival border; 

3. UL: Upper lip sensor, 5-DOF sensor, placed midsagittally at the intersection of the 
inferior aspect of the philtrum and the vermillion border; 

4. LL: Lower lip sensor, 5-DOF sensor, placed midsagittally along the vermillion border of 
the lower lip; 

5. TB: Tongue blade sensor, 5-DOF sensor, placed midsagittally along the dorsal surface of 
the apex of the tongue, approximately 5 mm posterior to the tongue tip; 

6. TD: Tongue dorsum sensor, 5-DOF sensor, placed midsagittally along the posterior 
tongue dorsum approximately 40 mm posterior to the tongue tip. 

 

Figure 6: Sensor position side view 

2.2.3 Bite-plate record 

The bite-plate record is used to gather the data needed to determine each subjects’ personal 
coordinate system, where the x axis lies along the mid sagittal plane, the y axis runs vertically 
perpendicular (upwards), and the z axis runs horizontally perpendicular (to the subject’s left). 
Two sensors are placed on the bite-plate: one at the maxillary central incisors (OS) and one 
along the midsagittal plane at the bisection between the back molars (MS) as shown in Figure 7. 
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Figure 7: MS and OS sensor positions in the bite-plate 

Figure 8 shows the placement of the bite-plate within the subject’s mouth. 

 

Figure 8:  Illustration of bite plate record 

A bite-plate calibration algorithm, described in Section 2.2.3, is used to translate and rotate the 
subjects’ individual coordinate system so that the origin is at the OS sensor and the articulatory 
space is referenced to the mid sagittal and maxillary occlusal planes. 

2.2.4 Calibration process 

After the data have been recorded, they are in the local coordinate space defined by the head 
reference sensor. In order to create a meaningful articulatory working space, the data have to 
be calibrated into a normalized articulatory space. The calibration process includes bite-plate 
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calibration, offset adjustment and final verification. The baseline of articulatory space is based 
on each subject’s anatomy, as shown in Figure 9. 

 

Figure 9: Target coordinate system 

2.2.4.1. Bite-plate calibration process 
Because the OS, MS, and REF sensors are placed within the mid-sagittal and maxillary occlusal 
planes, the relative positioning within the bite-plate record can be implemented to transform 
the data into the desired articulatory working space. 

The articulatory working space is based on individual’s anatomy structure, as shown Error! 
Reference source not found.. The origin of the coordinate system is set as the central point of 
the upper maxillary incisors. The vertical plane is set as the mid-sagittal plane, and the 
horizontal plane is defined as the maxillary occlusal plane, which is the plane of contact 
between the maxillary and mandibular teeth. Relative to these two coordinate planes, the X 
axis indicates forward and backward movement, the Y axis expresses upward and down ward 
movement, and the Z axis represents lateral movement. Thus, the mid-sagittal plane is given by 
the X-Y axes and the maxillary occlusal plane by the X-Z axes.  

The positive x axis is forward of the incisors, so that the negative x axis follows the mid sagittal 
line of the occlusal plane toward the back of throat. The positive z axis runs perpendicularly to 
the x axis on the occlusal plane toward the subject’s left. The positive y axis is perpendicular to 
the occlusal plane in the upward direction. This convention follows the “right hand rule,” with 
the origin at the maxillary central incisors. 

The fundamental goal of the data calibration process, called bite-plate calibration, is to ensure 
that the coordinate system represented by the data follows as closely as possible to the 
theoretical target articulatory working space mentioned above. 
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When the bite-plate calibration has been applied, the REF, OS, and MS sensors create a 
coordinate articulatory working space. OS is located at original point [0, 0, 0], MS is on the x-
axis, and REF is in the mid sagittal plane. 

However, there is one final adjustment to be made to this working space. Due to the width of 
the sensors themselves (and that of the incisors), the center of the OS sensor is not exactly at 
the central tip of the upper maxillary incisors. In addition, because the incisors typically bite 
into the dental wax on the bite place down to the level of the tongue depressor surface, both 
the OS and MS sensors are placed in the dental wax at a depth such that the center line of 
these two sensors is slightly above the tip of the upper maxillary incisors. To compensate for 
this offset, a final translation can be done equal to the expected distance from the center of the 
OS sensor to the true tip of the upper maxillary incisors. On average, this is about a -4mm offset 
horizontally (negative meaning toward the posterior), and about a -1mm offset vertically 
(downward). Figure 10 shows the sensor measurement details. 

 
Figure 10: Sensor measurement 

2.2.4.2 Verification 
After the bite plate calibration and offset adjustment, the system verifies the orientation and 
coordinate system. The verification includes the following items: 

• The REF sensor has a relatively large positive y value. (Vertical orientation correct) 
• The MS sensor has a relatively large negative x value (Horizontal orientation correct.) 
• The LAT sensor (when present) has a relatively large positive z value (Lateral orientation 

correct.) 
• The tongue blade sensor data is generally in front of the tongue dorsum sensor. 
• The upper lip sensor is generally above the lower lip sensor. 
• The tongue blade and dorsum sensors are generally behind both the lower lip and the 

upper lip sensors. 
• The jaw sensor is generally below all other sensors. 
• The palate data field is generally above all tongue sensors. 
• The tongue lateral sensor (where one is used) has a generally large positive z value. 
• The lip lateral sensor has a generally large positive z value. 
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2.2.5 Palate trace process 

The palate trace process is used to record each subject’s palate shape. Through this process, we 
can describe the vocal tract through combining the position of palate trace and sensors inside 
the subject’s mouth.  This process includes both the surface of palate and the perimeter of 
palate. The sensor’s trace is started at the central maxillary incisors, and the probe is swept 
straight back along the palate surface toward the uvula, then back and forth laterally from right 
to left dentition. Finally, the probe is swept around the buccal surface of the tips of the 
maxillary dentition starting at subject’s left-posterior and ending at right-posterior. Figure 11 
shows the track of sensor applying palate trace in details.  

 

 

Figure 11: Typical palate trace data 

2.2.6. Speech recording process 

The Marquette Electromagnetic Articulography corpus of Mandarin-Accented English (EMAMAE) 
is used in this work [8]. The EMAMAE dataset includes 40 speakers, 20 native English speakers 
and 20 native Mandarin speakers, balanced equally between male and female speakers. The 
dataset was collected using NDI Wave system. Calibration data included a bite plate record and 
plate trace described in the previous section 2.2.3 and 2.2.4; Articulatory movement was 
recorded by sensors (MI, TB, TD, UL and LL). Speech information included sets of contrastive 
words as well as continuous speech.  
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2.3. VTDemo Synthesizer 

2.3.1. Source-filter and Maeda models 

Figure 12 describes the speech production process. Air from the lungs is forced through the 
trachea to the larynx and vocal folds.  In voiced sounds such as vowels, these vocal folds are 
held closed with a certain tension, and the pressure of the air creates a quasi-periodic vibration 
of the vocal folds.  This creates a glottal excitation signal which moves through the vocal tract 
articulators consisting of the throat, mouth, tongue, and lips, which together act as a filter to 
control the production of sound.  

 

Figure 12: Source-filter model of the vocal tract 

The VTDemo system is based on the work of Shinji Maeda [3] which models the vocal tract 
using a set of parameters based on principal-components analysis as shown in Figure 13 



22 
 

 

Figure 13: Maeda model 

VTDemo takes a set of seven vocal tract shape parameters taken from Maeda’s work and 
converts them into a vocal tract area function, which is then used to filter a voicing signal form 
a modeled voice source creating real-time synthesis of an acoustic signal. Figure 14 shows the 
interface of a stand-alone version of the VTDemo synthesizer.  

 

Figure 14:  VTDemo software interface 
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The synthesis model is driven by the following acoustic synthesis parameters: 

1. “JW” describes the jaw movement during the speech;  
2. “TP” describes the expansion of tongue;  
3. “TS” describes the height of tongue;  
4. “TA” describes the status of opening and closing of vocal tract with tongue; 
5. “LA” describes the opening and closing status of lip; 
6. “LP” describes the expansion of lip; 
7. “LH” describes the vertical expansion of larynx  
8. “GA” describes the opening and closing of glottis 
9. “FX” describes fundamental frequency  
10. “NS” describes the status of velopharyngeal port opening  

2.4.  Kinematic to Synthesis mapping 
Previously, several different methods have been implemented in the RASS system for mapping 
kinematic data to synthesis parameters, including a 4-point piecewise linear mapping method, a 
2-point piecewise linear mapping method, and a quantile based method. Each of these three 
share a common framework in terms of which synthesis parameters are controlled by which 
kinematic variables. Table 1 shows the details of synthesis parameter and their corresponding 
kinematic source for these approaches. 

Table 1：Synthesis Parameters and Kinematic Data Sources as implemented by prior mapping 
methods 

Synthesis Parameter Variability Kinematic Source 
Segment Duration (ms) Static Sampling Rate of NDI-Wave  
Jaw Position (JW) Dynamic Varies directly with MI_y position 
Tongue Position (TP) Dynamic Varies inversely with mean of the TB_x and TD_x 

positions 
Tongue Shape (TS) Dynamic Varies directly with the mean of the TB_y and TD_y 

positions 
Tongue Expansion (TA) Static Set to neutral (0) value 
Lip Aperture (LA) Dynamic Varies directly with the distance between UL_xy 

and LL_xy  
Lip Protrusion (LP) Dynamic Varies directly with LL_x position 
Larynx Height (LH) Static Unspecified 
Glottal Aperture (GA) Static Unspecified 
Fundamental Freq. (FX) Static Unspecified 
Velopharyngeal Port 
Opening (NS) 

Static Unspecified 
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2.4.1. 4-point piecewise linear mapping method 

The 4-point piecewise linear mapping directly maps kinematic data to synthesis parameters 
using 4 coordinate pairs based on subject dynamic range and subject vowel space.  The two 
end-points of the map are determined from the minima and maxima kinematic values of an 
extrema speech record taken from the subject, and the two internal points are determined 
from the average minima and maxima kinematic values across a set of four stationary vowel 
records. Details of this mapping are as follows: 

Application sensors: TB, TD, MI, UL and LL 

Synthesis parameters controlled: LP, LA, TH, TE, TP, and JW 

Synth parameters fixed settings: 
• Larynx Height (LH): Fixed at 0 
• Glottal Aperture (GA): Fixed at continuous voicing 
• Fundamental Frequency (FX): Fixed at 0 (default value) 
• VP Opening (NS): Fixed at VP Closed 

 
The specific articulatory mappings: 

• The average Y position of the MI sensor is used to directly calculate the value MI_y 
which maps onto the JW parameter.  

• The average X positions of the TB and TD sensors is the value TBD_x which inversely 
maps onto the TP parameter 

• The average Y positions of the TB and TD sensors is the value TBD_y which maps onto 
the TS parameter 

• The average Y positions of the TB and TD sensors is the value TBD_y which inversely 
maps onto the TA parameter  

• The Euclidean distance between the UL and LL sensors is the value UL_LL which maps 
onto the LA parameter  

• The X position of the LL sensor is used to directly calculate the value LL_x which maps 
onto the LP parameter 

 

The linear mapping for the JW parameter is shown in Figure 15 with specific coordinates as 
follows: 

• Extreme min value of MI_y correspond to -3 ( MI_y _ext_min,-3) 
• Mean minimum value of vowel records correspond to -1.5 (MI_y _vowel_min, -1.5) 
• Mean maximum value of vowel records correspond to 0.5 (MI_y _vowel_max, 0.5) 
• Extreme max value of MI_y correspond to +3 (MI_y _ext_max,+3) 
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Figure 15: The 4 point piecewise mapping for the JW parameter 

The linear mapping for the TP parameter is shown in Figure 16 with specific coordinates as 
follows: 

• Extreme min value of TBD_x correspond to 3; (TBD_x _ext_min,3) 
• Mean minimum value of vowel records correspond to 2 (TBD_x _vowel_min, 2) 
• Mean maximum value of vowel records correspond to -2(TBD_x _vowel_max, -2) 
• Extreme max value of TBD_x correspond to 3 (TBD_x _ext_max,-3) 

  
Figure 16: The 4 point piecewise mapping for the TP parameter 

The linear mapping for the TS parameter is shown in Figure 17 with specific coordinates as 
follows: 
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• Extreme min value of TBD_y correspond to -3; (TBD_y _ext_min,-3) 
• Mean minimum value of vowel records correspond to 0 (TBD_y _vowel_min, 0) 
• Mean maximum value of vowel records correspond to 1 (TBD_y _vowel_max, 1) 
• Extreme max value of TBD_y correspond to +3 (TBD_y _ext_max,+3) 

 
Figure 17: The 4 point piecewise mapping for the TS parameter 

The linear mapping for the TA parameter is shown in Figure 18 with specific coordinates as 
follows: 

• Extreme min value of TBD_y correspond to 3; (TBD_y _ext_min,3) 
• Mean minimum value of vowel records correspond to 2 (TBD_y _vowel_min, 2) 
• Mean maximum value of vowel records correspond to -0.5 (TBD_y _vowel_max, -0.5) 
• Extreme max value of TBD_y correspond to -3 (TBD_y _ext_max,-3) 

  
Figure 18: The 4 point piecewise mapping for the TA parameter 
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The linear mapping for the LA parameter is a two-point mapping, as shown in Figure 19 with 
specific coordinates as follows: 

• Extreme min value of UL_LL correspond to -1.5; (UL_LL_min,-1.5) 
• Extreme max value of UL_LL correspond to +3 (UL_LL_max,+3) 

 

Figure 19: The linear mapping for the LA parameter 

The linear mapping for the LP parameter is also a two-point mapping, as shown in Figure 20 
with specific coordinates as follows: 

• Extreme min value of LL_x correspond to -3; (LL _x_ext_min,-3) 
• Extreme max value of LL_x correspond to +3 (LL_x_ext_max,+3) 
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Figure 20: The linear mapping for the LP parameter 

All of the above mappings are implemented on the kinematic data as direct linear 
interpolations on a sample by sample basis in real-time. For each synthesis parameter, the 
source kinematic measurement is used first to select the appropriate linear segment and then 
to interpolate the output synthesis parameter value. 

2.4.2.  2-point piecewise linear mapping method 

The 2-point piecewise linear mapping is similar to the 4-point method, except that it is 
implemented using only the extrema data for a subject. The two end-points are determined 
from the minima and maxima values of the extrema speech record Details of this mapping are 
as follows: 

Application sensors: TB, TD, MI, UL and LL 

Synthesis parameters controlled: LP, LA, TH, TE, TP, and JW 

Synthesis parameters fixed settings: 
• Larynx Height (LH): Fixed at 0 
• Glottal Aperture (GA): Fixed at continuous voicing 
• Fundamental Frequency (FX): Fixed at 0 (default value) 
• VP Opening (NS): Fixed at VP Closed 

 

The specific articulatory mappings: 

• The average Y position of the MI sensor is used to directly calculate the value MI_y 
which maps onto the JW parameter.  

• The average X positions of the TB and TD sensors is the value TBD_x which inversely 
maps onto the TP parameter 
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• The average Y positions of the TB and TD sensors is the value TBD_y which maps onto 
the TS parameter 

• The average Y positions of the TB and TD sensors is the value TBD_y which inversely 
maps onto the TA parameter  

• The Euclidean distance between the UL and LL sensors is the value UL_LL which maps 
onto the LA parameter  

• The X position of the LL sensor is used to directly calculate the value LL_x which maps 
onto the LP parameter 

 

The linear mapping for the JW parameter is shown in Figure 21. 

  
Figure 21: The 2 point piecewise mapping for the JW parameter 

The linear mapping for the TP parameter is shown in Figure 22. 
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Figure 22: The 2 point piecewise mapping for the TP parameter 

The linear mapping for the TS parameter is shown in Figure 23. 

 
Figure 23: The 2 point piecewise mapping for the TS parameter 

The linear mapping for the TA parameter is shown in Figure 24. 
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Figure 24: The 2 point piecewise mapping for the TA parameter 

The linear mapping for the LA and LP parameter is the same as for the 4-point method, as 
shown previously in Figure 19 and Figure 20.  

2.4.3. Quantile-based mapping method 

In the quantile mapping approach, the mapping is based on the probability distribution of the 
selected kinematic data variable across a continuous speech record.  The original intent of this 
mapping was to divide the synthesis parameter range (-3 to +3) into 0.1 increments, giving 61 
individual parameter values. These 61 values were then to be mapped  to a kinematic value 
based on evenly separated breakpoints, or quantiles, of the probability distribution, e.g. the 
first value is set to the 0 percentile (lower extrema) value, the second value to 100*(1/61) = the 
1.64 percentile value, and so on.  

The implementation methodology of this quantile approach in the RASS system inadvertently 
resulted in a set of kinematic data values different than the even 0.1 increments originally 
intended.  In practice, the “quantile” command from the standard C library was applied to the 
integer synthesis parameter values {-3,-2,-1,0,1,2,3}, a set of N=7 data values. The algorithm 
assigns quantiles under 0.5/N to the minimum value, above (N-0.5)/N to the maximum value, 
and uses linear interpolation to determine quantile values between those. This resulted in the 
target {0, 1/61, 2/61, … 60/61, 61/61} quantiles being assigned to the values: 

 {-3, -3, -3, -3, -2.9167, -2.8000, -2.6833, …, 2.8000, 2.9167, 3, 3, 3, 3} 

with a synthesis parameter interval of 0.1167. 

 The LA synthesis parameters is assigned values in the range -1.5 to +3, because the 
lower values are not used for normal voice synthesis. In this case the quantile algorithm on the 
value set {-1.5, -1, -0.5, 0, .5, 1.0, 1.5, 2.0, 2.5, 3.0} with N=10 resulted in the same {0, 1/61, 
2/61, … 60/61, 61/61} target quantiles being assigned the values: 
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 {-1.5, -1.5, -1.5, -1.4167, -1.3333, …, 2.7500, 2.8333, 2.9167, 3, 3, 3, 3} 

with a synthesis parameter interval of 0.0833. 

Details of this method are as follows: 

Application sensors: TB, TD, MI, UL and LL 

Synthesis parameters controlled: LP, LA, TH, TE, TP, and JW 

Synth parameters fixed settings: 
• Larynx Height (LH): Fixed at 0 
• Glottal Aperture (GA): Fixed at continuous voicing 
• Fundamental Frequency (FX): Fixed at 0 (default value) 
• VP Opening (NS): Fixed at VP Closed 

 
The specific articulatory mappings: 

• The average Y position of the MI sensor is used to directly calculate the value MI_y 
which maps onto the JW parameter, shown in Figure 25.  

• The average X positions of the TB and TD sensors is the value TBD_x which inversely 
maps onto the TP parameter, shown in Figure 26 

• The average Y positions of the TB and TD sensors is the value TBD_y which maps onto 
the TS parameter, shown in Figure 27 

• The average Y positions of the TB and TD sensors is the value TBD_y which inversely 
maps onto the TA parameter, shown in Figure 28 

• The Euclidean distance between the UL and LL sensors is the value UL_LL which maps 
onto the LA parameter, shown in Figure 29 

• The X position of the LL sensor is used to directly calculate the value LL_x which maps 
onto the LP parameter, shown in Figure 30 
 

Examples of the resulting mappings are shown for each synthesis parameter in Figure 25 to 
Figure 30 below. Values between the 61 identified points in each mapping are linearly 
interpolated between the two adjacent mapping values. 
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Figure 25: An example quantile mapping for the JW parameter 

 

Figure 26: An example quantile mapping for the TP parameter 
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Figure 27: An example quantile mapping for the TS parameter 

 

Figure 28: An example quantile mapping for the TA parameter 
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Figure 29: An example quantile mapping for the LA parameter 

 

Figure 30: An example quantile mapping for the LP parameter 

 

2.4.4. Discussion about previous mapping method 

The simple connection between an individual kinematic position value and an individual 
synthesis parameter, implemented by all these prior methods, is a substantial simplification of 
the complex relationship between articulatory motion and vocal tract configuration. Because of 
the overly simplified model, the experimenter running the RASS system often needs to 
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individually adjust the coordinates of these mapping methods to get adequate performance.  
Synthesis is typically limited to stationary vowel configurations, since a much more precise 
mapping that includes specific types of closure points would be necessary to adequately 
synthesize consonants. 

2.5. Audapt System 
In some RASS experiments, the resulting synthesized audio is further modified to change 
formant values before playing them back to the subject. The Audapt system is used to do this. 
Audapt is a speech manipulation software tool that both collects and manipulates speech files.  
It allows precise control over acoustics of a subject’s speech in real time.  Audapt returns the 
modified speech to the speaker through headphones.  Figure 31 displays the Audapt GUI and 
related variables. 

 

Figure 31: Audapt GUI 

2.6. Summary 
This chapter has introduced the NDI Wave (EMA) system, the RASS system, the VTDemo 
synthesizer, previous mapping methods, and the Aduapt system. The goal is to give a 
background of the entire system and compare as well as contrast the different methods so that 
the theory can be extended to a new more accurate mapping methods. 
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CHAPTER 3 Palate Mesh creation 
In this chapter, the fundamental concepts of three dimensional palate trace creation and 
related evaluation experiments will be introduced.  

3.1. Introduction 
One of the most important aspects of mapping from kinematic articulatory data to synthesis 
parameters is representing the kinematic data in a way that most accurately conveys the 
acoustic structure of the vocal tract. In order to do this, the kinematic data needs to relate as 
closely as possible to the vocal tract shape, specifically the cross-sectional area of the vocal 
tract.  Sensor position information does not accomplish this directly, primarily because it does 
not capture the vocal tract boundaries, the most significant of which are the hard and soft 
palate of each subject. 

In order to more accurately capture vocal tract configuration, we introduce a method for using 
the information from the palate trace to create more meaningful articulatory features for 
synthesis parameter calculation.  The first step of this approach is the creation of an accurate 
palate representation from the palate trace record taken from each subject during the 
calibration stage of data collection. The method introduced in this chapter for capturing the 
palate shape of subjects is based on a modified Thin Plate Spline (TPS) [9] approach. The TPS 
approach is augmented using a grid-based method that keeps only the vertically highest data 
points in each grid, in order to reduce the possibility of outlier data caused by experimenter 
error during palate trace capturing. 

For evaluation of the proposed approach, we use a data subject with no known outlier effects, 
and create outliers artificially to mimic the target scenario. These artificial data points simulate 
the behavior of a palate wand moving off of the palate for a short period of time.  Results are 
evaluated using mean-squared error to the TPS-generated palate on the original data with no 
outliers. 

3.2. Thin-plate spline method 
The thin-plate spline algorithm [9] is an established method for generating a palate estimate for 
each subject.  The basic idea of this approach is to start with a flat plane, and then warp this 
plane in a way that both fits the collected data and meets pre-specified smoothness constraints. 

The thin-plate smoothing spline 𝑓  is the unique minimizer of the weighted sum 

pE(𝑓) + (1 − 𝑝)𝑅(𝑓) 

with E(𝑓) the error measure 

 

E(𝑓) = ��𝑦(: , 𝑗) − 𝑓�𝑥(: , 𝑗)��
2

𝑗
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and R(𝑓) the roughness measure 

R(𝑓) = ∫(|𝐷1𝐷1𝑓|2 + 2|𝐷1𝐷2𝑓|2 + |𝐷2𝐷2𝑓|2). 

Here, the integral is taken over all of 𝑅2, and D denotes the partial derivative of 𝑓with respect 
to its ith argument, hence the integrand involves second partial derivatives of 𝑓. The smoothing 
parameter p is chosen so that (1-p)/p equals the average of the diagonal entries of the matrix A, 
with A + (1 − p)/p ∗ eye(𝑛) the coefficient matrix of the linear system for the n coefficients of 
the smoothing spline to be determined. This choice of p is meant to ensure that we are in 
between the two extremes of interpolation (when p is close to 1 and the coefficient matrix is 
essentially A) and complete smoothing (when p is close to 0 and the coefficient matrix is 
essentially a multiple of the identity matrix). The smoothness factor is an important component 
[10]. According to prior results from the TPS surface reconstruction technique [10], we use the 
preferred smoothing parameter P = 0.95. 

This approach works well for accurate palate trace data where the sensor has maintained 
consistent contact with the palate surface during the entire recording. Figure 32 shows the TPS-
derived palate mesh for subject 02 of the EMA-MAE dataset, which has a thoroughly covered 
palate trace record with no identifiable outliers.  

 

Figure 32: Palate mesh for EMA-MAE subject 02 

However, this method has difficulty when there are problems with the initial palate data. 
During EMA palate trace collection, the experimenter physically moves the plate trace wand in 
a pattern across the subject’s palate. It is very common to have points in the record where the 
wand moves off the palate, for example when changing direction of motion or when the sensor 
tip comes into contact with a small bump. To illustrate this, Figure 33 shows the TPS-derived 
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palate mesh for subject 18 of the EMA-MAE dataset, which has several outlier segments in the 
palate record. The outliers are noted in the figure with a red circle. 

 
Figure 33: Palate mesh for subject18 with outliers marked by red circle 

3.3. Proposed methods 

3.3.1. Convex hull concept 

The TPS method is a least-squares approach, which implicitly assumes a symmetric two-sided 
error pattern. However, because of the nature of the physical palate boundary, errors related 
to wand placement are by definition one-sided. An alternative surface fit that incorporates 
unidirectional error would be preferable. One such model would be based on a convex hull 
approach. The convex hull is a fundamental construction for mathematics and computational 
geometry [11], representing the outer boundary of a set of elements. Given a sufficient 
coverage of palate trace data, a convex hull over the data would represent an upper bound that 
matches the true palate surface.  The intent of this idea is to use the convexity constraint in a 
way that removes the outlier points discussed above from consideration. 

There are algorithms, such as Matlab’s Quickhull [12] implementation, which can return the 
convex hull of a set of points.  However, this cannot be directly used for our palate application, 
because it returns the entire three-dimensional convex bound, including both upper and lower 
boundary surfaces.  In addition, there are some implicit problems with the convexity constraint, 
because real palates may also include some concave regions that would be lost in this approach. 

Alternatively, in order to capture the general idea of the convex hull as a method for removing 
outliers and off-palate data points, we instead use an approach that focuses on keeping the 
locally uppermost points, which will implicitly eliminate outliers.  To do this, we use an 
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implementation in which the data is first divided into grids and then the highest vertically-
valued points in each grid are retained, prior to implementing the TPS fit. 

3.3.2. Gridded convex hull method 

Based on the convexity principle, we implement a new gridded convex hull method, which is a 
combination of a partitioned convex hull approach and a thin-plate spline for smoothing. The 
basic idea of this method is that we separate the whole palate trace into an n by n grid, and 
within each grid region we select a fixed percentage of the highest vertically valued points. We 
then remove the other points and then re-create the palate using the TPS method. The 
underlying idea is that these outliers caused by experimenter error tend to happen in short 
segments within a small horizontal region, and are all of substantially lower vertical value, so 
they can be identified within a region and removed using a simple percentile threshold. 

 

Figure 34: Gridded convex hull 

The steps of the gridded convex hull method are as follows: 

1. Identify the maximum and minimum values of the horizontal plane (X and Z axes) and 
calculate the step size according to the desired grid resolution to cover the palate trace. 
This was empirically varied to include 10x10, 20x20, 30x30, or 40x40 size grids.  

2. Within each grid, keep a fixed percentage of the points with maximum vertical height (Y 
value). This was empirically varied to increment from 10 to 90 percent, in 10 percent 
increments. 

3. Using only these uppermost points within each grid, implement the thin-plate spline 
algorithm. 
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3.3.3. Example results of gridded hull method 

To process the palate trace recording files, the first step is to extract the entire palate sensor 
record, and then identify the start and end time of each section of the record, including the 
outer dental boundary, the inner dental boundary, and the main palate trace. . The dynamic 
range of the palate was determined using dental boundaries, since in some cases the palate 
trace does not adequately cover the posterior portion of the palate region sufficiently. 

The grid size and percentage of kept vertices in each grid was empirically varied.  Grids included 
1X1, 5x5, 10x10, 20x20, 30x30, and 40x40, and percentages of kept points ranged from 5% to 
90 percent in 10 percent increments.  

Examples of typical results are shown from Figure 35 to Figure 40. These figures illustrates the 
results with different grid size and percentage of kept points with the original palate trace 
record for comparison: Figure 35 shows the result of subject 18 after implementing a 10x10 
gridded Convex Hull with 90% kept points,  Figure 36 shows the result of subject 18 with a 
20×20 grid with 90% kept points, Figure 37 shows the result of subject 18 with a 40×40 grid 
with 90% kept points, Figure 38 shows the result of subject 18 with a 10×10 grid with 95 
percent kept points, Figure 39 shows the result of subject 18 with a 10×10 grid 85 percent kept 
points, and  Figure 40 shows the result of subject 18 with a 10×10 grid with 10 percent kept 
points. According to these figures, we can observe that different grid size and percentages lead 
to different shapes of palate trace.  

 

 

Figure 35: Palate mesh of subject 18 with grid size at 10x10 and 10% kept points 
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Figure 36: Palate mesh of subject 18 with grid size at 20x20 and 10% kept points  

 

Figure 37: Palate mesh of subject 18 with grid size at 40x40 and 10% kept points 
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Figure 38: Palate mesh of subject 18 with grid size at 10x10 and 5% kept points  

 

Figure 39: Palate mesh of subject 18 with grid size at 10x10 and 85% kept points 
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Figure 40: Palate mesh of subject 18 with grid size at 10x10 and 90% kept points 

3.4. Evaluation methodology 

For evaluating the gridded convex hull method, we need to compare the final palate mesh 
against a known correct palate mesh. This is problematic since none of the subjects which have 
outlier problems in the palate records have known correct palate meshes. To address this, we 
choose to create an artificial evaluation set using a subject with good palate data and no 
outliers, adding outliers that represent the kinds of errors we typically see.  The artificial 
outliers are added using a linear interpolation method to simulate the wand being away from 
the subjects’ palate during recording. To achieve this, we randomly select one point in the area 
of the palate trace, and insert an outlier segment at that point, with a height and time length 
randomly selected from within a uniform distribution determined empirically through analysis 
of the outliers in the data set. We then implement the percentile gridded convex hull method 
on the new palate trace data with the artificial outlier to verify the effectiveness and feasibility 
of the new method.  

Specifically, an outlier segment is created by choosing a random downward angle, a random 
distance distributed uniformly between 6 and 10mm, and a random time period chosen 
uniformly between 100 and 500ms, and adding a straight line corresponding to these values.  
This gives roughly 40 to 200 points of simulated outlier values at the 400Hz kinematic sampling 
rate. 

We created two simulated evaluation conditions, one created by adding a single outlier and one 
created by adding multiple random outliers, where the number of outliers was chosen from 2 
to 5.  We then implemented the gridded convex hull method, and calculated the corresponding 
mean squared error between the resulting palate mesh and the baseline. For the one outlier 
case, we implemented 45 times in total, using a grid size of 1x1, 5x5, 10x10, 20x20, 30x30 and 
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40x40 and percentage of kept points ranging from 10% to 90% in 10% increments. For the 
random number of outliers, we used the same number of experimental implementations was 
36 for grid size from 1x1, 5x5, 10x10 20x20,30x30 and 40x40, percentage rate from 5% to 90%, 
but for each one of these  we executed the configuration 220 times, with a different chosen 
number (from 2 to 5) of outliers in each case. 

Results are shown below. Figure 41 to Figure 43  are examples of the single outlier case and 
Figure 44 and Figure 45Figure 45 are examples of the multiple outlier case.  

 

Figure 41: Original palate mesh of subject 1 

 

Figure 42: Palate of subject 1 with an artificial outlier 



46 
 

 

Figure 43: Palate mesh of subject 1 after using the gridded convex hull method with  

10x10 with 10% kept points 

 

 

Figure 44: Palate of subject 1 with random number of artificial outliers 
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Figure 45: Palate mesh of subject 1 with random number of artificial outliers after using the 
gridded convex hull method with 10x10 with 10% kept points 

From Figure 41 to Figure 45 illustrate how the gridded convex hull method is able to effectively 
remove this type of outlier.  

3.5. Root mean square error versus grid size and percentage of kept vertices  

For quantification of our method’s accuracy, we calculate the root mean square error between 
the baseline palate trace and the processed palate trace after adding artificial outliers as 
described above and using the gridded convex hull method.  

RMSD = �∑ (𝑦�𝑡 − 𝑦)2𝑛
𝑡=1

n
 

The following table shows the RMS error versus grid sizes and percentage of data kept in each 
grid. Table 2 shows the example of subject 01. Table 3 shows the average RMS value of subject 
01 with random outliers.  
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Table 2：RMS data for subject01 with one outlier 

 Grid size 
percentage of 
kept points  

1X1 5X5 10X10 20X20 30X30 40X40 

5% 0.3057 0.2885 0.1435 0.3094 0.5450 0.6693 
10% 0.3382 0.3235 0.1217 0.6503 0.7482 1.9063 
20% 0.5082 0.2819 0.3127 0.6350 0.7670 1.9453 
30% 0.5981 0.4577 0.2969 0.6266 0.7803 2.0341 
40% 0.5874 0.4774 0.3256 0.6253 0.7914 2.0471 
50% 0.9033 0.5491 0.3523 0.6229 0.8047 2.0406 
60% 1.6588 0.7755 0.4100 0.6227 0.8123 2.0276 
70% 2.3023 0.7218 0.4559 0.6235 0.8214 2.0160 
80% 3.1113 0.7582 0.4902 0.6206 0.8301 2.0077 
90% 4.7766 1.1501 0.5382 0.6197 0.8389 2.0092 

 

Table 3：Average value of RMS data for subject01 with randomly selected number of outliers 

 Grid size 
percentage of 
kept points  

1X1 5X5 10X10 20X20 30X30 40X40 

5% 0.2151 0.1779 0.1778 0.3011 0.5352 0.6693 
10% 0.2537 0.2377 0.1576 0.2569 0.5181 0.6359 
20% 0.5083 0.3105 0.1903 0.3193 0.7302 0.7030 
30% 0.5551 0.3515 0.2846 0.3368 0.5622 0.6018 
40% 0.5893 0.5121 0.3147 0.3648 0.5949 1.0542 
50% 0.8607 0.5253 0.3950 0.4619 0.5965 0.7180 
60% 1.6262 0.5821 0.4748 0.5087 0.5411 0.7309 
70% 2.2959 0.6761 0.5791 0.5920 0.6754 0.9167 
80% 2.9255 0.7489 0.6854 0.6940 0.7643 0.9860 
90% 4.7761 1.0703 1.0344 0.8335 0.7632 1.1378 

 

From the table above, the combination of 10 by 10 grid with 10 percent of points kept in each 
grid gives the best empirical results for recovering the subject’s correct palate shape. 

3.6. Summary 

This chapter has introduced robust palate mapping methods used to accurately estimate each 
subject’s palate mesh data, as well as experimental data supporting the parameters to be used 
in implementation.   
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Chapter 4 Kinematic to Synthesis Parameter Mapping 
In this chapter, a new mapping method will be introduced, based on a least-squares linear 
mapping from articulatory features to articulatory synthesis parameters. The selection and 
calculation of the articulatory features is described, followed by the details of the linear 
mapping algorithm, and evaluation experiments comparing the mean squared error of the new 
mapping method to previous approaches.  

4.1. Overview 
As described in Section 2.1, the fundamental goal of mapping kinematic data to synthesis 
parameters is to represent the precise relationship between kinematics and acoustics in order 
to enable accurate acoustic synthesis. In order to accomplish this task, we first address the 
issue of identifying the most acoustically relevant articulatory features from the kinematic data. 
Based on the three-dimensional palate trace in relation to the sensor data and the principle of 
pronunciation with vowel and consonant, articulatory features can be calculated that relate 
directly to the configuration and cross-sectional area of the vocal tract. These articulatory 
features can then be used as input variables to a matrix-based linear mapping, trained using 
vocalizations for which the correct synthesis parameters are known. To learn the mapping, the 
well-known pseudo-inverse method and target synthesis parameters from phoneme 
identification and extracted from formant space are used. Using data from 5 native speakers (3 
male, 2 female) in the EMA-MAE corpus, the mapping is then compared to previous mappings 
using both formant distortion and PESQ, based on a mean-square error metric, described in 
Section 4.5.  

4.2. Articulatory features 

The selection of articulatory features is based on the goal of representing physical 
characteristics that correlate with acoustics, such as vocal tract structure and cross-sectional 
area. Given the palate mesh and the placement of the kinematic sensors, the most relevant 
features are those which directly represent the forward position of the tongue and the height 
of the vocal tract opening at the sensor locations. Based on this idea, the following 9 
articulatory features are selected: 

1. vertical distance from tongue blade sensor to palate; (AF1) 
2. horizontal distance from tongue blade sensor to upper incisor: (AF 2) 
3. lateral distance between tongue blade and tongue lateral sensors: (AF3) 
4. Euclidean distances between all 3 pairs of tongue sensors (TB, TD and TL): (AF4) 
5. vertical distance between upper and lower lips (lip opening): (AF 5) 
6. lateral distance from upper lip to lateral lip sensor (lip width): (AF 6) 
7. vertical distance from lower incisor (jaw) sensor to palate: (AF 7) 

 

To provide data for training the articulatory-to-synthesis mapping, we selected 16 target 
phonemes including 8 vowels and 10 consonants.  Phoneme boundary information for target 
vowels and consonants was provided through manual segmentation from trained students in 
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the Marquette Speech and Swallowing Laboratory.  Then, for each target vowel and consonant, 
the average value of articulatory features was computed, and a corresponding set of synthesis 
was selected using two different approaches, as described in Section 4.3.  

The mechanism for identifying boundary points in the target phonemes varied depending on 
whether it was a vowel or a consonant, as described in more detail below.  
4.2.1. Feature computation window for vowels 

There are 8 target vowel phonemes used in these experiments:  “i”, “I”,”e”,”æ”,”u”,” ʊ”, “o” 
and “a” (IPA notation).  These are labeled as phoneme IDs from 1 through 8, respectively. 
Articulatory features from these vowels were calculated from a frame of speech centered at 
the labeled midpoint of the vowel, with ±10ms on either side.  Figure 46 illustrates this 
phoneme identification window for vowels. In the figure, the range between two blue lines is 
original vowel area, the range between two red lines is phoneme identification window. A 
single articulatory feature value is computed for each vowel as the average value of the 
articulatory features in the phoneme identification window.  

 

Figure 46: Phoneme identification window for vowels. The area between the two blue lines is 
the original vowel and the area between the two red lines is the phoneme identification 

window averaged to determine articulatory values. 

4.2.2. Feature computation window for consonants 
There are 10 target consonants used in these experiments, which are further divided into five 
groups according to the place and manner of articulation: ‘b’ and ‘p’ bilabial stops are group 1 
(type ID 11) , ‘d’ and ‘t’ alveolar stops are group 2 (type ID 12) , ‘g’ and ‘k’ velar stops are group 
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3 (type ID 13), ‘f’ and ‘v’ labiodental fricatives are group 4 (type ID 14), and  ‘s’ and ‘z’ coronal 
sibilants are group 5 (type ID 15). To identify the boundary regions for these consonants, we 
first chose a phoneme identification window 200 ms before the start of the following vowel. 
After this, we identify a specific closure point in this phoneme identification window. For group 
1, we chose the identification point where the minimum lip distance occurs as the spot for 
articulatory feature calculation, with an identification window for articulatory feature 
calculation centered  at this spot ±10ms. For groups 2 and 5, we select the identification point 
where the minimum Y value of the TB sensor occurs, with an identification window for 
articulatory feature calculation centered at this spot ±10ms. For group 3, we choose the 
identification point with minimum Y value of the TD sensor, with an identification window for 
articulatory feature calculation centered at this spot ±10ms. For group 4, we choose the 
identification point which has minimum lip distance, with identification window for articulatory 
feature calculation centered at this spot ±10ms.  

Figure 47 illustrates this phoneme identification window for consonants. In the figure, the 
range between two blue lines is 200ms consonant area before vowel area, the range between 
two red lines is phoneme identification window. A single articulatory feature value for each 
consonant is calculated as the average value of articulatory features in the phoneme 
identification window.

 

Figure 47: Phoneme identification window for consonants, the area between the two blue lines 
is the 200ms preceding vowel onset, while the area between the two red lines is the phoneme 

identification window averaged to determine articulatory values. 

4.3. Target synthesis parameters 
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It is important to identify accurate synthesis parameters corresponding to the consonant and 
vowel data, in order to create an accurate mapping system. In these experiments we have 
implemented two different approaches to selecting synthesis parameters for training: 

1. (All phonemes) Fixed synthesis parameters based on target phoneme type. In this 
approach, pre-determined synthesis parameters are selected from a table based on the 
corresponding phoneme type.  

2. (Vowels only) Synthesis parameters determined for each example based on formant 
values. In this approach, acoustic F1 and F2 formant values are estimated from the 
vowel examples, and then a lookup table is used to identify synthesis parameters that 
most closely correspond to those formant values. 

 

Each of these approaches is described in more detail below. 

4.3.1. Target synthesis parameters based on phoneme type 

In this approach, the target synthesis parameters are based entirely on the phoneme identity, 
from a table of prototypical values based on Maeda’s original work [14]. These represent 
synthesis parameters which will generate these specific phonemes, including the stationary 
configuration for vowels and the closure points for consonants, based on the corresponding 
vocal tract configuration for Maeda’s synthesizer. These values are shown in Table 4 below. 

Table 4: Fixed synthesis parameters based on target phoneme type 

Phoneme type ID Synthesis parameter 
JW TP TS TA LA LP 

1 1 -1 0.6 0 0 -1 
2 -0.6 -0.6 -1.8 0 0 -1 
3 -0.6 0 0 0 1.1 0.6 
4 -1.3 0.8 -0.5 0 2 -1 
5 3 1.3 1.2 -0.3 -0.6 -0.2 
6 0.3 1.3 1.2 -0.3 -0.6 -1.5 
7 0.1 1.4 -0.2 -0.1 0 0 
8 -3 1.5 -3 -0.1 -0.3 -2.8 

11 0 0 0 0 -1.5 -3 
12 0 0 0 0 -1.5 -3 
13 0.4 -1.8 -0.1 -0.2 -1.1 3 
14 0 0 0 0 -1.2 -3 
15 0 -1 -1.8 0 -1.1 -3 

 

While this approach is robust and can be used for any phoneme that has known target 
synthesis values, it suffers from several problems as well. This includes the fact that vocal 
synthesis is in some cases a many-to-one mapping, which means that there are multiple 
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possible synthesizer values that could result in very similar acoustic sounds, and there is not a 
particular methodology underlying the selection of the Table 4 synthesis parameters that 
makes for a smoothly varying parameter space across the entire vocal space.  This makes 
creating a linear mapping problematic. 

A second issue is that these target values are prototypical and therefore do not match the 
acoustics of each speech instance being used to generate the kinematics, which means that the 
training data itself is not in fact accurate, so that the synthesis parameters are not matched to 
the kinematics. 

To address this issue, a second approach for generating synthesis parameters was implemented, 
based on acoustic matching as described in the next section. 

4.3.2. Target synthesis parameters based on acoustic formant matching 

The goal of this approach is to determine the corresponding synthesis parameters by matching 
those parameters to the acoustics of the corresponding input waveform, for each training 
example.  For consonants it is difficult to identify a clear acoustic feature or spectral measure 
that can be used, so the experimental work thus far has been limited to vowels. Vowels almost 
always have four or more distinguishable formants, but the first two formants are most 
important to determine the quality of vowels [15] . Hence, F1 and F2 play critical roles in 
synthesis parameter selection.  

The relationship between synthesis parameters and generated formant values in the Maeda 
synthesis has not been thoroughly studied, and so the first step was a more in-depth study of 
this relationship. A sub-selection technique was then applied to identify points within the 
formant space that correspond to a more smoothly-varying set of synthesis parameters. From 
these values, formant values of the training waveforms were used to lookup appropriate target 
synthesis values, which were used for training the mapping.  

The methodology used for the initial analysis of formant-synthesizer relationships was a grid-
based search of combinations of the most acoustically-relevant synthesis parameters. An 
approximate initial range of synthesis parameters was chosen, as follows: 

1. JW: from -3 to 3, the interval is 0.25;    
2. TP: from -1 to 2.5, the interval is 0.25;     
3. TS: from -2.5 to2.5, the interval is 0.25;   
4. TA = from -0.5 to 2.5, the interval is 0.25; 

 
Across this range of parameters, the VTCalc software, implemented in Matlab, was used to 
generate 100ms length vowel signals. After this, a basic formant estimation using a low-order 
LPC model was implemented to estimate the F1 and F2 formant values. While this is an overly 
simplistic formant estimation technique for real speech, for the highly stationary synthetic 
speech produced by the articulatory synthesizer, the approach worked well. The LPC order used 
was 10, because empirically this resulted in the most consistently accurate F1 and F2 values as 
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shown in Figure 48. The first two peaks above an initial threshold of 200 Hz were used as 
estimates. 
 
 

 
 

Figure 48: Example LPC spectal envelope of order 10 for a synthesized vowel /a/, used to 
estimate F1 and F2.  

After estimating the corresponding F1 and F2 formant values across the synthesis parameter 
range mentioned above, we plotted the associated formant space, as shown in Figure 49 
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Figure 49: The distribution of vowel formants across all synthesis parameters 

Because of the many-to-one characteristics of the synthesizer, there are many cases where 
settings that are close in terms of formant values are not close in terms of parameter settings. 
To address this, one approach is to sub-sample the full range of parameter settings in a way 
that enforces smoothness in both the formant space and the parameter space, i.e. to select 
points in such a way that those that are close in terms of formant values are also as close as 
possible in terms of synthesis parameter settings. 

To accomplish this, a sub-sampling algorithm was implemented.  The algorithm is described 
step-by-step as follows: 

1. An initial set of points was selected randomly, by sampling the points in Figure 50, 
referred to as the formant space. The size of this subgroup was arbitrarily set at 10% of 
the full space.  This group of points was named the “sample group”. 

2. One target point from within the sample group was selected for evaluation. A set of 3-4 
nearby points also in the sample group was selected based on formant distance (+/- 
3Hz).  This group was identified as the “neighborhood group.” 

3. Around the target point, another set of 5-6 nearby points from the full formant space 
was selected, also based on formant distance (+/- 10Hz).  This group was identified as 
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the “swap group”. (Because this group is selected from the full group, its size in terms of 
formant distance is several times smaller in diameter.) 

4. The target point and each point within the swap group were evaluated for average 
synthesis parameter distance to all points in the neighborhood group, as measured by 
Euclidean distance of synthesis parameters. 

5. If any of the points from the swap group had a smaller average synthesis parameter 
distance to the neighborhood group, the minimum distance point was swapped with the 
target point.  This new point was added to the sample group, and the old target point 
was removed from the sample group. 

6. Steps 2 through 5 were repeated for each point within the sample group. After this the 
mean synthesis distance from target point to neighborhood groups was computed and 
evaluated. 

7. This swapping evaluation process was repeated for multiple iterations until the mean 
synthesis distance stopped becoming smaller. 

 
Figure 50 shows the sub-sampled formant distribution after implementing the above swapping 
algorithm. 
 

 
 

Figure 50: Target synthesis parameter distribution in the formant space 

Table 5 shows the decrease in the average Euclidean distance of synthesis parameters between 
each point in the space and its neighbors in the formant space, as a function of the number of 
times the algorithm was run.  
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Table 5: Decrease in mean synthesis parameter distance as result of algorithm. 

 
As can be seen in the above table, the method had only minimal impact on the average 
synthesis parameter similarity of points in the formant space. The resulting 10% sample group 
was used as a table-lookup tool for matching formant values to corresponding synthesis 
parameters. For all the vowel training instances, the extracted segments were analyzed using a 
similar LPC method to identify F1 and F2.  These values were also manually checked against 
each other and against known typical vowel formant values for consistency to identify and 
correct any gross estimation errors. 

From the formant values for all vowel training instances, the chart illustrated in Figure 50 above 
was used to determine corresponding synthesis parameters.  The articulatory values and final 
synthesis parameters were used to create the desired linear mapping, as described in the next 
section. 

4.4. Pseudo-inverse linear method 

After identifying the target synthesis parameters, we implemented pseudo inverse regression 
to train with articulatory features and target synthesis parameters. In mathematics, and in 
particular linear algebra, a pseudoinverse 𝐴+ of a matrix A is a generalization of the inverse 
matrix [16] where 

𝐴+ = 𝐴∗(𝐴𝐴∗)−1 

A common use of the pseudoinverse is to compute a least squares solution to a system of linear 
equations that lacks a unique solution [17]. This provides a robust solution to the linear system 
𝐴𝑥 = 𝑏. Hence, through the pseudo-inverse method, we can get a unique coefficient matrix to 
build the relationship between kinematic data and synthesis parameters. 

This least-squares pseudo-inverse method was implemented for mapping. In the case of the 
synthesis parameters, there are four individual parameters being mapped, which represent 
four different linear mapping systems. For solving this, we did a separate least-squares pseudo-
inverse for each synthesis parameter, the output of each of which is a vector of linear 

Previous synthesis parameter 
distance 

Synthesis parameter distance after 
swapping 

Swapping times 

3.66 3.17 4414 
3.17 2.98 2040 
2.98 2.90 1049 
2.90 2.86 488 
2.86 2.86 163 
2.86 2.85 26 
2.85 2.80 0 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Generalized_inverse
https://en.wikipedia.org/wiki/Inverse_matrix
https://en.wikipedia.org/wiki/Inverse_matrix
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/System_of_linear_equations
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regression coefficients. For a specific synthesis parameter, we created a data vector of 
articulatory feature variables 

𝑋 = [𝐴𝐴1 ⋯𝐴𝐴7,1] 

The constant offset to the equation provides an additional coefficient that represents the linear 
regression offset. . 

4.4.1. The pseudo-inverse linear mapping equation 

Using the matrix of articulatory features and the vector of target parameters, the linear 
equation for one specific synthesis parameter is given as: 

𝒀 = 𝐴𝑐𝑐𝑐𝑐 × 𝑿 , 

where Y is the vector of target synthesis parameters，Acoef is the coefficient vector to be 
solved, and X is the data matrix of articulatory features. The solution is 

Acoef = 𝑋+ × 𝑌, 

where X+ is the pseudoinverse of X.  

This process is repeated for 4 times for the target variables “JW, TP, TS and TA”, respectively. 
(The other two target variable “UL and LL” were still computed by the 4-point linear mapping 
method.) After this, the four individual coefficient vectors can be combined together as a 
multiple-input multiple-output mapping equation as follows: 

𝐘 = �
𝐚𝟏𝟏 ⋯ 𝐚𝟏𝟏
⋮ ⋱ ⋮
𝐚𝟏𝟏 ⋯ 𝐚𝟏𝟏

� × 𝐗 

This final coefficient matrix represents the linear mapping between the articulatory feature 
values and the synthesis parameter outputs for each synthesis parameter. 

4.5. Evaluation method 

To evaluate the linear mapping method, four different evaluation metrics were used.  The first 
is an objective metric, based on the mean squared error of the synthesis parameters compared 
to the target valued in the training set. The second is an objective metric based on audio 
similarity, using formant distortion.  The third is a qualitative metric, based on the Perceptual 
Evaluation of Speech Quality (PESQ) and the last one is based on voice distortion.  

Several experimental evaluations were conducted. The first of these is the individual phoneme 
test, which is evaluated by MSE. The second of these is a sentence test which is evaluated by 
PESQ and formant distortion.  In each case, the new linear mapping method is compared to the 
prior piecewise and quantile methods.  

For mean squared error method on synthesis parameters with mapping methods, the following 
equation is used 
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MSE =
1
𝑁
��𝑌�𝑖 − 𝑌𝑖�

2
𝑛

𝑖=1

 

where 𝑌�𝑖 is the value of synthesis parameter from linear mapping method or point piecewise 
method, and 𝑌𝑖 is the targeted phoneme synthesis parameter value. N is the number of samples 
of kinematic data. 

PESQ is a standard comprising a test methodology for assessment of the speech quality. PESQ 
uses a perceptual model to estimate mean opinion scores (MOS) that cover a scale from 1 (bad) 
to 5 (excellent)[18]. It is widely used for objective voice quality and is a full-reference algorithm 
and analyzes the speech signal sample-by-sample. As such, PESQ makes use of an original 
reference signal for a comparison. In this experiment, a PESQ is used to compare the original 
sound file form EMA-MAE corpus, and the output signals of the Maeda synthesizer.  The output 
signals include rebuilt sentence audio by point-wise mapping and pseudo-inverse mapping. 

For formant distortion, it is used to compare the formant of original audio of sentences from 
EMA-MAE corpus with output signals of the Maeda synthesizer.  The output signals include 
rebuilt sentence audio by point-wise mapping and pseudo-inverse mapping. The distortion 
formula is in the following:  

formant_distortion

= ���(F_original) − (F_synthesized)� × �(F_original) − (F_synthesized)�
∗
� 

4.6. Mapping experiments 

4.6.1. Experimental Setup  

Speech data from 5 native speakers, 3 female and 2 male in the EMA-MAE corpus, was used. 
The words section from five native speakers in the EMA-MAE corpus is used to measure 
articulatory features for training and also is used for evaluation. In the words section, there are 
17 word lists and each list has 24 words, respectively. In addition, the sentence section which 
have 10 sentences for individuals from those 5 native speakers in the EMA-MAE corpus were 
implemented for evaluation. 

We used the segmented phonemes from the words section of the corpus for computing the 
linear mapping relationship for training and also for MSE evaluation.  

Experimental setup is summarized in Table 6. The individual vowels and consonants from the 
words section of the data as well as the continuous speech data from the corpus were used for 
evaluation, with metrics appropriate to those data as described in the table. 

https://en.wikipedia.org/wiki/Mean_opinion_score
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Table 6: Experimental setup. Evaluation metrics used with each data group and mapping 
method are indicated by an X. Data groups where the data used to determine the mapping are 

the same as those used for evaluation are indicated as training set data. 

Data Mapping Methods Evaluation 
data class 

Evaluation Method 

MSE Formant 
distortion 

PESQ 

Word section 
vowel Pseudo-inverse 

mapping based on 
fixed parameters 

Training 
set 

X X X 

Pseudo-inverse 
mapping based on 

determined 
parameters 

Training 
set 

X X X 

4-point piecewise 
mapping 

Training 
set 

X X X 

Quantile-based 
mapping 

Training 
set 

X X X 

consonant Pseudo-inverse 
mapping based on 
fixed parameters 

Training 
set 

X   

4-point piecewise 
mapping 

Training 
set 

X   

2-Point piecewise 
linear mapping 

Training 
set 

X   

Quantile-based 
mapping 

Training 
set 

X   

Sentence section 
 Pseudo-inverse 

mapping based on 
fixed parameters 

Testing 
set 

  X 

Pseudo-inverse 
mapping based on 

determined 
parameters 

Testing 
set 

  X 

4-point piecewise 
mapping 

Testing 
set 

  X 

2-Point piecewise 
linear mapping 

Testing 
set 

  X 

Quantile-based 
mapping 

Testing 
set 

  X 
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4.6.2. The experimental results 

Results of the experiments are shown below. Figure 51 to Figure 55 show the mean-squared 
synthesis error on the training data for a single subject using the new method with target 
synthesis parameters chosen by phoneme type, for the synthesis parameter JW, TP, TS and TA 
respectively, compared to the mean-squared synthesis error using the Quantile method. 
Results are subdivided into vowel, consonant, and overall error.  From these figures it is clear 
that linear mapping has better performance than quantile mapping method in most cases.  

 

 

Figure 51: Mean squared error for subject 36 for all synthesis parameters comparing the least-
squares mapping method using synthesis parameters determined by phoneme ID to the 

Quantile method. 
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Figure 52: Mean squared error for subject 37 for all synthesis parameters comparing the least-
squares mapping method using synthesis parameters determined by phoneme ID to the 

Quantile method  
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Figure 53: Mean squared error for subject 38 for all synthesis parameters comparing the least-
squares mapping method using synthesis parameters determined by phoneme ID to the 

Quantile method 
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Figure 54: Mean squared error for subject 39 for all synthesis parameters comparing the least-
squares mapping method using synthesis parameters determined by phoneme ID to the 

Quantile method  
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Figure 55: Mean squared error for subject 40 for all synthesis parameters comparing the least-
squares mapping method using synthesis parameters determined by phoneme ID to the 

Quantile method 

Table 7 shows the corresponding average value of the mean squared error of synthesis 
parameters comparing the least-squares method using phoneme ID target synthesis 
parameters to other comparative methods for vowel data, for 5 subjects. Note that the 
reference value used for calculating mean-squared error is the same target synthesis value used 
for the least-squares approach, which biases the results toward the proposed method. 

Table 7: The average mean squared error for various mapping methods on vowel data, using 
target synthesis parameters based on phoneme ID. 

 JW TP TS TA 
Pseudo-inverse mapping based on fixed 

parameters 
5.85 1.87 4.47 0.72 

4-point piecewise mapping 5.09 3.31 5.57 1.53 
2-Point piecewise linear mapping 5.2 3.86 5.75 1.56 

 Quantile-based mapping 5.30 2.04 4.38 1.66 
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Table 8 shows the corresponding average value of the mean squared error of synthesis 
parameters determined by formant matching with vowel data, for 5 subjects. 

Table 8: The average mean squared error for various mapping methods on vowel data, using 
target synthesis parameters based on parameters determined by formant matching  

 JW TP TS TA 
 Pseudo-inverse mapping based on 

parameters determined by formant matching 
2.50 1.08 2.05 0.66 

4-point piecewise mapping 2.52 1.25 2.16 0.90 
2-Point piecewise linear mapping 2.71 1.74 2.70 1.29 

 Quantile-based mapping 3.96 1.98 2.74 3.42 
 
Table 9 shows the average value of PESQ and formant distortion for vowel phonemes using the 
audio signal generated by synthesis parameters.  
 

Table 9: The results of PESQ and formant distortion for vowel data 

 PESQ Formant  distortion 
Pseudo-inverse linear mapping based on fixed synthesis 

parameters 
2.88 360.51 

 Pseudo-inverse mapping based on parameters determined 
by formant matching 

2.93 336.28 

4-point piecewise mapping 2.46 398.13 
2-Point piecewise linear mapping 2.14 463.25 

 Quantile-based mapping 2.33 417.02 
 

Table 10 shows the corresponding average value of the mean squared error of synthesis 
parameters based on fixed synthesis parameters with consonant data, for 5 subjects. 

Table 10: The mean squared error for mapping method based on fixed synthesis parameters 
with consonant data 

 JW TP TS TA 
 Pseudo-inverse mapping based on fixed 

parameters  
2.20 0.92 1.97 0.59 

4-point piecewise mapping 2.52 1.25 2.16 0.90 
2-Point piecewise linear mapping 2.71 1.74 2.70 1.29 

 Quantile-based mapping 0.73 1.72 3.17 0.75 
 

Table 11 bellow shows the average value of PESQ on the sentence data. 
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Table 11: The PESQ results on sentence data 

 PESQ 
4-Point piecewise linear mapping 1.92 
2-Point piecewise linear mapping 1.83 

Quantile-based linear mapping 1.74 
Pseudo-inverse linear mapping based on fixed synthesis parameters 1.22 

Pseudo-inverse linear mapping based on formant matching parameters 1.32 
 

4.7. Discussion and Conclusion  

This chapter has introduced a new linear mapping method based on the pseudo-inverse 
method, using two different approaches for establishing synthesis targets. The method has 
been implemented on five native speakers in the EMA-MAE corpus. The results show less 
formant distortion and higher accuracy of the resulting synthesis parameters.  
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CHAPTER 5 Conclusion 
In this thesis, I have introduced a least-squares linear mapping method for accurately mapping 
articulatory kinematic data from an EMA system onto acoustic synthesis parameters. In order 
to realize this new linear mapping approach, kinematic features based on a three dimensional 
palate mesh were used to provide an initial input more representative of the vocal tract 
structure, and a new approach for determining accurate synthesis parameter targets based on 
formant value matching was introduced. Experimental results on several subjects from the 
EMAMAE dataset indicate that the new mapping gives reduced mapping error. Ultimately, the 
impact of this work is that it provides researchers with a more accurate method for mapping 
kinematic data to synthesis parameters. 

5.1. Summary of work 
A gridded convex hull method for analysis and estimation of palate trace has been developed 
and implemented for the creation of a virtual 3D palate trace. In addition, a methodology for 
determining acoustically matched synthesis parameters for training a mapping has been 
developed. The primary work consists of the implementation of the pseudoinverse method for 
linear mapping, and the implementation of several different prior mapping methods for 
comparison. Overall, the acoustic feedback from novel mapping method is improved and the 
distortion and delay from previous methods are decreased. 

5.2. Research Contributions 
This thesis includes three major contributions: 

1. The creation of a new approach for estimating the three dimensional virtual palate trace 
for individual subjects, based on a gridded convex hull and thin-plate spline. 

2. The creation of a new approach for estimating correct target synthesis values for 
kinematic training data, using a formant-based acoustic matching algorithm. 

3. The application of the pseudoinverse linear mapping method to the problem of 
kinematic-to-synthesis parameter mapping. 

Based on the experimental results, the kinematic to synthesis mapping method is able to 
estimate more accurate synthesis parameters.  This will enable the RASS system to provide 
acoustic feedback to subjects with less distortion and delay.  

5.3. Future Work  
There are several directions for improving the kinematic to synthesis linear mapping. One 
valuable extension of this work would be to create the virtual three dimensional palate trace 
based on more accurate palate information, for example by incorporating MRI scans or other 
imaging technology. It would also be possible to extend the number of articulatory features 
which can illuminate vocal tract movement during speech. Moreover, more regression methods 
including nonlinear mapping techniques could be incorporated into the mapping process. 
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