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ABSTRACT 
 
This paper describes unsupervised speech/speaker cluster 
validity measures based on a dissimilarity metric, for the 
purpose of estimating the number of clusters in a speech data 
set as well as assessing the consistency of the clustering 
procedure. The number of clusters is estimated by minimizing 
the cross-data dissimilarity values, while algorithm consistency 
is evaluated by calculating the dissimilarity values across 
multiple experimental runs. The method is demonstrated on the 
task of Beluga whale vocalization clustering.  
 

Index Terms— speech/speaker clustering, unsupervised 
validity, dissimilarity value, validation of classifiers. 

 
 

1. INTRODUCTION 
 
Unsupervised clustering of acoustic waveforms based on 
waveform similarity has important application to both human 
speech tasks and animal vocalization analysis. The underlying 
goal of this clustering is to identify vocalizations with similar 
patterns for tasks such as repertoire analysis, or in the case of 
human speech, for tasks such as document indexing and 
speaker clustering. Recent work in this area has included 
efforts in speaker indexing [14], labeling speaker turns [11], 
utterance similarity using speaker clustering [19], speaker 
diarization [15], and speaker segmentation for meetings [10].  

Many different clustering algorithms have been developed 
[8]. In the clustering process, there are neither pre-specified 
classes nor observations that would show what kind of 
desirable relationship is valid among the observations. One of 
the most difficult parts of clustering is validation of the results, 
since by definition the task is unsupervised and it is not 
possible to quantify whether the results are “correct”. 
Nonetheless, it is still possible to make measurements 
regarding cluster similarity and algorithm consistency as 
indicators of confidence in the clustering results.  

In general, there are three methods to investigate the 
validity of a cluster, based on assessment using external 
criteria, internal criteria, and relative criteria [7, 8].  An external 
assessment criterion evaluates the clustering result using an a 
priori known structure, i.e. it is a supervised approach to 
validation. Internal criteria evaluation determines if the 

structure is intrinsically appropriate for the data by using only 
comparisons of data, while a relative criteria assessment 
compares two structures resulting from the same algorithm to 
find out which one is more stable or more appropriate for the 
data. Thus internal criteria methods are data-based and relative 
criteria methods are algorithm-based. Both internal and relative 
validation criteria are unsupervised approaches.  

Whenever possible, researchers utilize supervised validity 
(external criteria) to evaluate clustering results.  The degree of 
similarity between the resulting structure and known partition 
of the data is calculated using similarity measures such as 
cluster purity [1, 17], partition misclassification count 
(PMC)[13]; or some statistical measures such as the Rand 
statistic, the Jackard coefficient, or the Fowlkes and Mallows 
index [8]. 

The research presented here addresses unsupervised 
cluster validity using a cluster dissimilarity method to estimate 
the number of clusters in a data set, and to improve and assess 
the accuracy of a given clustering procedure. The method is 
developed based on Lange et al. [12], which itself is built upon 
the early work of Brekenridge [2] as later generalized and 
extended by Fridlyand and Dudoit [6] in their Clest algorithm. 

This research is organized as follows: after the 
introduction in section 1, section 2 describes the notion of 
dissimilarity and its usage to estimate the number of clusters in 
the data and to assess the accuracy of the clustering procedure.  
Section 3 provides experimental validation through the HMM-
based k-model clustering of Beluga whale repertoire data and 
discussion of the results; followed by conclusions in section 4. 
 

2. METHODS 
 
This section introduces the clustering distance method of Lange 
et al. [12], leading to a metric of dissimilarity. The number of 
clusters is then estimated from the cross-data dissimilarity 
analysis and the clustering results are evaluated for consistency 
using their multi-run dissimilarity. 
 
2.1. Dissimilarity metric 
 
Let a data set D consist of N observations D = { X1, …, XN}. Xi 
= {xi1, …xit} is an observation of length t composed of 
potentially multivariate feature vectors x.  The problem of 
clustering is to find a partition of the data set into k disjoint 
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clusters.  A clustering algorithm Ak builds a solution L= Ak(D), 
where L = {L1, …Ln} is a vector of labels, and Li ∈ {1, … k} 
denotes the cluster label. Note that the algorithm Ak is not a 
classifier itself, but rather a software tool to establish a 
matching between a specific finite data set and associated 
cluster labels. 

Consider a comparison of solutions computed on two 
different data sets.  Let L1= Ak(D1) be defined with regard to a 
data set D1 and L2= Ak(D2) for data set D2.  The goal would be 
to compare two solutions L1 and L2 and to assess their 
similarity or dissimilarity.  They are, however, not directly 
comparable since they come from different data sets.  To assess 
the distance of clustering solutions, Lange et al. devise a 
predicted label or classifier that renders the solutions 
comparable.  

In general, supervised classification generates a classifier 
function C that assigns an arbitrary observation from a 
designated feature space to one of k classes based on a labeled 
input data. A dataset D1 together with clustering solution L1 
can be considered as a training data set used to construct a 
generalized classifier function.  This classifier C trained from 
(D1, L1) predicts a new label L3= C(D2) for data set D2.  These 
labels L3= C(D2), then, can be compared to those generated by 
the clustering algorithms, that is, with L2= Ak(D2).  

Lange et al. define a measure of the distance of L3 and L2 
using a normalized Hamming distance measure as follows: 
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where 1{L3i≠L2i}=1, if  L3i≠L2i and zero otherwise.  Equation 
(1), compares two sets of labels that are not necessarily in 
natural correspondence.  This measure quantifies the average 
distance of two clustering solutions.  It can be seen as a 
misclassification risk with respect to class labels produced by a 
clustering algorithm. 

One significant problem with this approach is the non-
uniqueness of label representations. Two partitionings of a data 
set D2 might be structurally equivalent although the labelings 
L3 and L2 are differently represented. For instance, a cluster 
labeled 2 in the first solution might correspond to the one 
labeled 1 in the second solution, and vice versa.  This 
ambiguity poses a problem for validation.  

To overcome the non-uniqueness of representation, the 
label indices in one solution need to be optimally permuted as 
to maximize the agreement between the two solutions under 
comparison.  The distance value, then, is modified as follows: 

 
=

≠

∈

=

n

i
ii

k
Pk LL

nP
d

1
2323 )}({1

1min
:)L,L( π

π

 (2) 

where Pk is the set of all permutations of the label elements.  
Equation (2) quantifies the fraction of differently labeled points 
and can be regarded as the empirical misclassification risk of 
classifier C with respect to the clustering algorithm Ak.   
       To use this concept of solution distance in a way that 
indicates overall dissimilarity value, we denote )( kADis as the 

average of )L,L( 23Pkd  obtained for r times of split over the 

data D: 
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Lange et. al. refer to this metric as “stability”; however, since 
its value increases rather than decreases with distance between 
solutions, we here refer to it as a “dissimilarity” index of 
clustering solutions with regard to the distribution of the data. 
 
2.2. Number of cluster estimation in a data set 
 
Applying this dissimilarity value to estimate the number of 
clusters in the data, equation (3) is normalized using the 
misclassification rate of a random labeling Dis(Rk) that assigns 
an observation to cluster v with probability 1/k: 
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The smaller the value of ( )kDis A  ∈[0,1], the more similar are 
the solutions being compared. 

Using this approach to estimate the cluster number we 
have the following algorithm:  
 
For each number of clusters k ∈ {kmin, …, kmax} perform the 
following steps 

1. Estimate )(ˆ
kAisD by averaging r splits of the data: 

a. Split the given data set into two halves D1, D2 and 
apply a clustering algorithm Ak to both 

b. Construct classifier C using D1 and its cluster labels 
L1 =Ak(D1); then compute L3= C(D2) 

c. Use equation (2) to calculate the distance of the two 
solutions L3= C(D2) and L2= Ak(D2) 

2. Sample s random k-labels, compare pairs of these, and 
compute the empirical average of the dissimilarities to 
estimate )(ˆ

kRisD  
3. Normalize each )(ˆ

kAisD  with )(ˆ
kRisD  to get an 

estimate for )( kAisD  using equation (4) 
Return the estimated number of clusters 

)(minargˆ
kk AisDk = . 

 
2.3. Cluster validity measure 
 
The notion of dissimilarity can be further employed to assess 
the consistency of clustering results. If all partitions into k 
clusters obtained from running algorithm Ak on data D are close 
in structure to partition L, then L can be considered to be 
consistent. The dissimilarity value used for this is a 
generalization of the cross-data cluster dissimilarity 
computation mentioned in the previous section. To implement 
this, the clustering algorithm is run t times on the same data set 
using different initial conditions (or different parameter settings 
if parameter variation is of interest) and computes the average 
dissimilarity value of the labeling results as follows: 
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where Pk is the permutation of all label elements, 1{Li≠Lj}=1, if  
Li≠Lj and zero otherwise; and L = Ak(D); with L = labeling 
result, Ak = a clustering algorithm, D = data to cluster. The 
smaller the multi-run dissimilarity value ∈[0,1], the more 
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consistent is the clustering algorithm across this dataset. To 
incorporate the impact of data inclusion as well as initial 
conditions, this idea can easily be extended to use random 
subsets for each run in a resampling-with-replacement fashion. 

 
3. EXPERIMENTS 

 
An illustration of this method is given using a Beluga whale 
repertoire clustering experiment.  Figure 1 shows the basic 
approach: 

 
 
 
 
 

Figure 1. Block diagram to cluster Beluga repertoire data 
 

3.1. Beluga data set 
 

The vocalizations were made by a population of beluga whales 
residing in the Saint Lawrence River Estuary.  Belugas use 
echolocation to locate their prey, to find breathing holes in the 
Arctic ice sheet, and to navigate in the waters. They produce 
many different calls, including clicks, squeals, and whistles. 
The Beluga population has been extensively studied regarding 
their seasonal distribution, size, age structure, and pathology. 
They are susceptible to the effect of human-made noise due to 
the large amount of shipping in the Saint Lawrence River, and 
the focus of this study has been on the analysis of the impact of 
this noise [18] and on evaluating similarity between established 
social groups. Even though the repertoire of the species is not 
well known, the vocalizations needed to be accurately 
categorized for the study, so vocalization clustering was 
implemented. 

The vocalizations were selected from five study sites.  
They were recorded in July and August over the course of six 
years by Scheifele [18].  The acoustic data was collected with 
an omni-directional hydrophone and recorded on a Sony TCD-
D8 DAT tape with 16-bit quantization.  
 
3.2. Hidden Markov Model-based k-model clustering 
 

A hidden Markov model (HMM)-based k-model clustering [3] 
is used for vocalization clustering. On each iteration every 
repertoire data is assigned to a single cluster represented by an 
HMM.  The HMM parameter updates are influenced only by 
data items currently in the associated clusters.   

The HMM-based k-models algorithm is a generalization of 
the standard k-means approach, with the cluster centroid 
vectors being replaced by the probabilistic models (in this case, 
HMMs).  The criterion to re-assign data to clusters is 
maximization of the likelihood of the data points.  The re-
assignment of the data employs the Viterbi algorithm.  The 
computation of clusters is done by re-estimating the model 
parameters using a Baum-Welch re-estimation algorithm.   

Features for this experiment consist of Greenwood 
function cepstral coefficients (GFCC) [4] which are 
generalizations of well-known Mel-frequency cepstral 
coefficients (MFCCs) [5].  Thirty-six element feature vectors 

are extracted. They consist of cepstral coefficients along with 
delta and acceleration coefficients.  The repertoires are 
Hamming windowed with frame and step sizes of 3 ms and 1.5 
ms. Cluster models for the experiment are 15-state left-to-right 
HMMs with each state contains a single diagonal-covariance 
Gaussian.   
 
3.3. Experimental results - discussion 
 

Initially the dissimilarity metric is used for feature selection to 
find out the best features for Beluga repertoire clustering in 
terms of overall dissimilarity.  Figure 2 shows the dissimilarity 
results on three different features, the cepstral coefficients 
(GFCC) and their delta (D) and acceleration (A) coefficients, 
the mean-normalization cepstral coefficients (GFCCDA-MN), 
and the variance-normalization cepstral-coefficients 
(GFCCDA-VN) [9] across different number of clusters for 
beluga data06 data set.   
 

 
Figure 2. The dissimilarity index values of the beluga data06 

from three different cepstral coefficient features  
 

Of the three features, GFCCDA leads to the best performance. 
This feature is then selected for the rest of the clustering 
procedure.  

Figure 3 shows the use of the cross-data dissimilarity 
method to estimate number of clusters k from four different 
beluga data sets. Estimates are k = 3 (data96), k = 5 (data03, 
data07) and k = 6 (data06). 

 

 
Figure 3. Cluster estimates for four different Beluga data sets. 
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To illustrate the consistency of the results, Table 1 

presents the dissimilarity values and their respected standard 
deviations from 10 separate runs of the clustering from 5 
different beluga data sets.  

 
 Data Number 

of 
clusters 

Dissimilarity 
value 

1 
2 
3 
4 
5 

data96a 
data96 
data03 
data05 
data06 

2 
3 
5 
6 
6 

0.026±0.003 
0.130±0.012 
0.473±0.046 
0.359±0.049 
0.211±0.019 

Table 1. The estimated number of clusters and dissimilarity 
values of 5 different beluga data sets 

 
Results indicate that the dissimilarity value has a 

significant range for the different datasets. It gives an almost 
perfect match (0.026±0.003 dissimilarity value) for data96a. 
Groups of repertoires in this data are assigned consistently to 
the same clusters in each experimental run. In comparison, the 
clustering result presents a relatively high dissimilarity value 
(0.473±0.046) for data03. There are several possible 
hypotheses for this variation. Inconsistent clustering runs as 
shown by a high dissimilarity value may indicate that there are 
a relatively large range of vocalization types in the data set with 
only a few examples of each, so that data limitation prevents 
accurate grouping. Another possibility is that the vocalizations 
are relatively similar with a more continuous variation. 
 

4. CONCLUSION 
 
The idea of using dissimilarity to assess the quality of 
clustering has been introduced, as a way of evaluating the 
distance between clustering solutions. The dissimilarity metric 
is implemented both to estimate clustering parameters such as 
number of clusters, as well as for overall assessment of 
consistency in the final clustering results. The approach is able 
to infer the natural partitions of complex acoustic data such as 
Beluga repertoire data, and, more importantly, is able to 
provide a confidence measure regarding consistency of these 
clustering results without known a priori vocalization labels.  
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