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ABSTRACT 
ACOUSTIC MODEL ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION 

AND ANIMAL VOCALIZATION CLASSIFICATION 
 
 

Jidong Tao, B.Eng., M.S. 
 

Marquette University, 2009 
 
 

Automatic speech recognition (ASR) converts human speech to readable text.  Acoustic 

model adaptation, also called speaker adaptation, is one of the most promising techniques in 

ASR for improving recognition accuracy.  Adaptation works by tuning a general purpose 

acoustic model to a specific one according to the person who is using it.  Speaker adaptation 

can be categorized by Bayesian-based, transformation-based and model combination-based 

methods.  Model combination-based speaker adaptation has been shown to have an 

advantage over the traditional Bayesian-based and transformation-based adaptation methods 

when the amount of adaptation speech is as small as a few seconds.  However, model 

combination-based rapid speaker adaptation has not been widely used in practical 

applications since it requires large amounts of speaker-dependent (SD) training data from 

multiple speakers.  This research proposes a new technique, eigen-clustering, to eliminate 

the need for large quantities of speaker-labeled training utterances so that model 

combination-based adaptation can be started from much more inexpensive speaker-

independent (SI) data.  Based on principal component analysis (PCA), this technique 

constructs an eigenspace using each utterance in the training set.  This proposed adaptation 

method can not only improve human speech recognition directly, but also contribute to 

animal vocalization analysis and behavior studies potentially.  Application to the field of 

bioacoustics is especially meaningful because the amount of collected animal vocalization 

data is often limited and therefore fast adaptation methods are naturally suitable. 
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PREFACE 

As I am finalizing my dissertation, I am considering the two most valuable experiences in 

my doctoral process.  The first is that of identifying a specific research direction for my 

Ph.D. study, and the second is that of figuring out how to accomplish it.  Generally, a 

perfect topic would allow a student to accomplish his or her program in less time with better 

quality, but it is very difficult to find this “right” direction at the early stages of study.  The 

research topics I had been working on originally spanned many different areas in both 

human speech technologies and bioacoustics, including acoustic enhancement for improving 

audio quality, acoustic feature extraction at the front-end of recognition systems, and looking 

at the Lombard effect for investigating the auditory system.  Eventually, I settled on acoustic 

model adaptation as my dissertation topic.  I have gained much research experience and 

knowledge from all these areas. 

Before I decided my research direction, thorough research in this direction was critical.  

This taught me what other researchers have done in this area, and which part of this 

direction was still open.  However, one more practical point I often ignored was how those 

people implemented their methods in terms of experimental work and software 

programming, so I did not focus until almost the last year in my Ph.D. life on whether I 

could realistically implement the same experiments as what the people did in their works.  I 

finally realized that it was nothing to be proud of to just understand complicated algorithms, 

such as the expectation maximization (EM), because the derivation of statistical equations is 

a fundamental skill to a Ph.D. candidate in electrical engineering.  Having an earlier 

consciousness of programming implementation would have given me a better understanding 

for the time and effort I needed for this research direction, and help me make a wise 
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decision as to both theory and practice. 

This Ph.D. work was funded by Dr. Dolittle project, which focuses on development of a 

broad framework for pattern analysis and classification of animal vocalizations by integrating 

successful models and ideas from the field of speech processing and recognition into 

bioacoustics (Johnson et al., 2003).  Therefore my work naturally consists both of a 

theoretical aspect for human speech and a practical aspect for bioacoustic application.  

Although the field of bioacoustics is challenging due to its multidisciplinary nature, speech 

technology is the original foundation.  I am hopeful that my Ph.D. research will benefit both 

fields. 
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C H A P T E R  1  INTRODUCTION 

1.1 Problem Definition 

Automatic speech recognition (ASR) is the process of converting human speech to 

readable text.  The core of all speech recognition systems consists of a set of statistical 

acoustic models representing the various sounds of the language to be recognized.  ASR can 

be classified as speaker-independent (SI) or speaker-dependent (SD), depending on whether 

the system’s acoustic model is trained for a variety of speakers or targeted to a specific user.  

Each speaker has differences in a range of physical characteristics: age, sex, dialect, personal 

style, etc.  Because of these differences, speaker-independent systems often show large 

performance fluctuations when recognizing the data of new speakers, due to mismatches 

between the new speaker’s data and the training data.  A well-trained speaker-dependent 

system generally performs significantly better than a speaker-independent one in recognizing 

speech from the target speaker because it has no such mismatch issue.  However, speaker-

dependent ASR requires a large amount of speech data for each specific user of the system, 

and all users need to train individual acoustic models in order to obtain acceptable 

performance. 

Acoustic model adaptation, also called speaker adaptation, is a method for quickly 

decreasing sensitivity to speaker variability when the amount of data for a new user is 

limited.  Speaker adaptation techniques take utterances from a specific user, called adaptation 

data, and tune the parameters of pre-trained background acoustic models to create a speaker-

adapted (SA) system, close to an ideal SD system trained for that user.  Background models 

can be a single SI model set or several SD models, depending on training data availability.  
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For example, the background models are SI in both Bayesian-based maximum a posterior 

(MAP) (Gauvain and Lee, 1994) and transformation-based maximum likelihood linear 

regression (MLLR) (Leggetter and Woodland, 1995), whereas they are SD in model 

combination-based methods such as reference speaker weighting (RSW) (Hazen, 2000) and 

eigenvoice (EV) (Kuhn et al., 2000). 

Speaker adaptation improves ASR performance effectively with a small amount of 

adaptation data.  When adaptation data is only a few seconds, the task is called rapid speaker 

adaptation.  Not all the techniques mentioned above are able to implement rapid adaptation.  

Model combination-based adaptation methods are commonly referred to as “rapid” 

techniques because they are more effective than both Bayesian-based and transformation-

based methods when data is minimal (Kuhn et al., 2000). 

Rapid speaker adaptation is important to ASR research since large vocabulary 

continuous speech recognition (LVCSR) systems often have little time or data to adapt new 

speakers.  However, current rapid adaptation techniques are based on SD rather than SI 

model and thus require large amounts of speaker-dependent training data.  Because SD 

background models are much more expensive in terms of data collection, transcription, and 

training time than SI models, rapid adaptation has not yet been widely used in practical 

applications.  An important open question to address therefore is whether we can 

accomplish rapid speaker adaptation without pre-trained SD models and training data. 

In addition to being a useful tool for improving the accuracy of ASR systems, adaptation 

can be effectively implemented in other domains as well.  In fact, the original motivation for 

pursuing this particular research problem arose out of animal vocalization classification, in 

the field of bioacoustic signal processing.  In such tasks, it is possible to use model 
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adaptation to improve classification accuracy, which, as discussed in more detail in Section 

4.3, the classification for ortolan bunting vocalizations was successfully demonstrated (Tao 

and Johnson, 2008).  In the vast majority of bioacoustic domains, it is necessary to use fast 

adaptation because the length of individual vocalizations and the duration of caller (the 

animal making the vocalization) turns is short and irregular, but implementation is difficult 

because few datasets contain sufficient identity-labeled data to build the speaker-dependent 

models that are required to use existing rapid adaptation approaches. 

1.2 Purpose 

This dissertation introduces a new method in model combination-based rapid speaker 

adaptation using only SI training data.  The new technique, eigen-clustering, eliminates the 

need for large quantities of speaker-labeled training utterances, so that speaker adaptation 

with extremely small amount of adaptation data (e.g., a few seconds) can be accomplished 

from inexpensive SI data.  The proposed method can not only improve human speech 

recognition, but also contribute to animal vocalization analysis and behavior studies.  The 

ultimate purpose of this research is to benefit both human speech technology and 

bioacoustics applications. 

1.3 Dissertation Overview 

The first chapter has been a brief overview of the dissertation and the motivation behind 

the research.  The second chapter discusses background knowledge and related works in the 

fields of speech recognition and bioacoustics.  The third chapter proposes the Eigen-

clustering framework and mathematical description. 
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The fourth chapter details the experiments and results of the new method for both 

human speech recognition and animal vocalization classification.  The recognition results 

based on the existing adaptation techniques are also presented for comparison purpose. 

The final chapter, five, gives a summary of the dissertation, discusses the contributions 

of the research, and suggests possibilities for future work. 
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C H A P T E R  2  BACKGROUND 

2.1 Automatic Speech Recognition 

Automatic speech recognition (ASR) aims to provide a human-machine interface for 

transferring spoken language to written text.  The basic structure of an ASR system (Yu, 

2006) is shown in Figure 2.1. 

 

Figure 2.1  ASR System 

The speech signal is processed in a feature extraction or front-end processing module 

that extracts salient feature vectors, referred to as observations.  Given the extracted 

observation sequence 1 2, ,..., TO o o o , where T  is the length of the sequence, generally 

three sources of information are required by the recognizer: an acoustic model, a language 

model, and a dictionary.  The acoustic model is a statistical representation of knowledge 

about acoustics, phonetics, gender, and dialect differences among speakers.  The language 

model incorporates knowledge of possible word sequence, semantics, and grammatical 

variation.  The dictionary, or lexicon, maps pronunciation units such as phonemes, from 

which the acoustic model is constructed, to the word set present in language model. 
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The speech recognizer, sometimes referred to as decoder, uses all the above information 

to hypothesize the word sequence 1 2
ˆ

LW w w w  , where L  is the number of words in the 

sequence, with the maximum a posterior probability ( | )P W O  as expressed by 

( | ) ( )ˆ argmax ( | ) argmax argmax ( | ) ( )
( )w w w

P O W P W
W P W O P O W P W

P O
   . (2.1) 

The likelihood ( | )P O W  is determined by the acoustic model and the prior ( )P W  is 

determined by the language model. 

2.1.1 Hidden Markov Models 

The most popular and successful acoustic model to date is the Hidden Markov Model 

(HMM) (Juang, 1984; Rabiner, 1989; Rabiner and Juang, 1993; Jelinek, 1999).  This is a 

natural framework for modeling speech, which has temporal structure and features that can 

be encoded as a sequence of spectral vectors in the frequency domain.  An HMM acoustic 

model based ASR system is emphasized in this dissertation. 

A left-to-right HMM with N  states is shown in Figure 2.2.  At each time instance t  that 

a state j  is entered, 1 t T  , an observation feature vector tO  is generated one by one by 

the probability density ( )j tb O  from the 2N   emitting states.  The generation starts from 

the first non-emitting state and stops at the last, with no observations generated by the two 

start and end states.  The transition probability, ija , indicates the probability of which state 

transits to either itself or the continuous right state.  Therefore, the problem of estimating 

the likelihood ( | )P O W  in equation (2.1) is replaced by estimating the HMM   as 

 
0 1 1

1

( | ) ( | ) ( )
t t t

T

s s s t s s
s t

P O W P O a b o a




   , (2.2) 



7 

 

where 0 1 1, ,..., TS s s s   is a state sequence associated with the observation sequence through 

the HMM, and 0s  and 1Ts   correspond to the non-emitting states shown in Figure 2.2. 

 

Figure 2.2  A left-to-right HMM with N-2 emitting states 

The observation distribution ( )j tb O  is represented by either single Gaussian or multiple 

Gaussian distributions, which is referred to as Gaussian mixture model (GMM).  A GMM is 

defined as the density function 

 
1

( ) ( ; , )
jM

j t jm t jm jm
m

b o c N o 


  , (2.3) 

where jM  is the number of mixture components for state j , jmc  is the weight of 

component m  of state j  subject to the constraint 
1

1jM

jmm
c


 .  ( ; , )t jm jmN o    is the 

m th normal density function of state j  denoted by 

 
1

12
1

( ; , ) exp ( ) ( )
2

T
t jm jm jm t jm jm t jmN o o o  

          
. (2.4) 
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A single Gaussian ( 1jM  ) may be not suitable especially for a HMM system trained by the 

speech data from a variety of speakers because there are many pronunciation variations of 

the same phoneme (Becchetti and Ricotti, 1999).  Multiple mixture Gaussians ( 1jM  ) can 

approximate continuous pdfs, and more accurately represent the distribution of speech data 

(Liporace, 1982; Juang, 1985; Juang et al., 1986). 

2.1.2 Estimation of HMM Parameters – Expectation-Maximization Algorithm 

Training data and machine learning algorithms such as the expectation maximization 

(EM) algorithm (Dempster et al., 1977) are used to find the parameters of the HMM.  The 

EM algorithm is an iterative procedure for approximating maximum likelihood (ML) in the 

context of incomplete-data cases such as Gaussian mixture density and hidden Markov 

model estimation problems.  For each iteration, the procedure consists of an expectation 

step (E-step) and a maximization step (M-step).  In the E-step, the Baum’s auxiliary function 

ˆ( , )Q   (Baum et al., 1970) is computed as the expectation of the complete-data (sufficient 

statistics) given the incomplete-data (observations) and the current model parameters  .  

Given this complete-data, the M-step estimates the parameters of the model by maximizing 

the auxiliary function.  The application of re-estimation formulae for HMM implementation 

of the general EM algorithm is called the Baum-Welch algorithm (Baum et al., 1970; Baum, 

1972; Moon, 1996).  For an HMM with N  number of states, where states 1 and N  are the 

non-emitting initial and final states, the forward probability is defined as the joint probability 

of the first t  observation vectors in state j  at time t : 

 
1

1 1
2

( ) ( ,..., , | ) ( ) ( )
N

t t t t ij j t
i

j P o o s j i a b o  





      
 . (2.5) 



9 

 

( )t j  can be computed recursively on the right hand right of equation (2.5).  The initial and 

final conditions for the above recursion are 

 1

1

2

1 1 1

( ) ( ) 1 1

( )

t j j t

N

T iNi

j t

j a b o j N t

i a j N t T







     


 
. (2.6) 

Likewise, the backward probability is defined as the probability of the observation sequence 

from 1t   to the end, and calculated as 

 
1

1 1 1
2

( ) ( ,... | , ) ( ) ( )
N

t t T t ij j t t
j

j P o o s j a b o j  


  


   . (2.7) 

The initial and final conditions are 

 1

1 1 12

1 ,
( )

( ) ( ) 1, 1

jN

Nt

i ii

a j N t T
j

a b o i j t






   
 

. (2.8) 

 The state transition count ( , )t i j , which is the probability of being in state i  at time 1t   

and going to state j  at time t , is defined and computed as 

 1
1

( ) ( ) ( )
( , ) ( , | , )

( | )
t ij j t t

t t t

i a b o j
i j P s i s j O

P O

 
 




    , (2.9) 

where ( | )P O   is the total likelihood and calculated by either forward probability or 

backward probability as 

 1( | ) ( ) (1)TP O N    . (2.10) 

The state occupation count, ( )t j , the probability of being in state j  at time t , is defined 

and calculated as: 

 
( , | ) ( ) ( )

( ) ( | , )
( | ) ( | )

t t t
t t

P O s j j j
j P s j O

P O P O

   
 


    . (2.11) 
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The HMM parameters λ can be estimated by maximizing the right side of equation (2.2) 

iteratively. The maximization process is equivalent to maximizing the following auxiliary 

function (Dempster et al., 1977): 

 
, , ,

ˆ( , ) ( ) log ( ) ( , ) logt j t t ij
t j t i j

Q j b o i j a      , (2.12) 

where ̂  is the new HMM parameters derived from   in the previous iteration.  Given the 

above definitions, the final re-estimation formulae for the parameters of HMM with GMM 

at state j  are as follows: 
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A similar re-estimation equation can be derived for the transition probability 
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The Baum-Welch algorithm described above runs iteratively. More specifically in each 

iteration, the E-step computes the expected state occupancy   and the expected state 

transition count   using the previous iteration forward and backward probabilities, and the 

M-step re-estimates the model parameters in equations (2.13), (2.14), (2.15) and (2.16) to 

maximize the auxiliary Q-function in equation (2.12). 

For recognition, the Viterbi algorithm (Forney, 1973) is generally used to identify the 
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most likely sequence of states that could have produced the input utterance, and the correct 

acoustic model is selected using maximum likelihood (ML) (Moon, 1996) method over the 

set of all HMMs. 

Recognition results are commonly reported by word error rate (WER) or word 

accuracy (ACC) (Huang et al., 2001).  Word error rate is defined as 

 %
S D I

WER
N

 
 , (2.17) 

where S  is the number of substitutions, D  is the number of deletions, I  is the number of 

insertions, and N  is the number of words in the reference.  Word accuracy is computed as 

 % % 1
N S D I H I

ACC WER
N N

   
    , (2.18) 

where H  is ( )N S D  , the number of correctly hit (recognized) words.  The Viterbi 

algorithm (Forney, 1973) generally is used to align a recognized word sequence against the 

correct word sequence in transcription and compute the number of substitutions, deletions, 

and insertions.  Word accuracy is used to measure the experimental performance in this 

study. 

2.1.3 Acoustic Units and Context Dependency 

The fundamental unit of a language (e.g., English) is typically a word.  For speech 

recognition tasks with a small vocabulary (< 1K words), such as English digits, HMMs are 

often whole-word models with enough states to represent the sequence of all phonemes.  An 

advantage of using word models is that the phonetic coarticulation inherent within these 

words can be captured. 

While whole-word HMMs have been widely used for small vocabulary speech 
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recognition, they are impractical in terms of training data and number of models needed for 

speech recognition with medium (1K – 10K words) to large vocabularies (> 10K words).  In 

these situations, the alternative is to use phoneme based models, which can be sufficiently 

trained with a few hundred sentences.  An advantage of using phone models is that there is a 

standard rule (i.e., dictionary or lexicon) to map words to phonemes allowing words to be 

easily split into a sequence of phones with capacity for unlimited vocabulary. 

There are two major categories for phone models: context-independent and context-

dependent models.  Monophone models, which are context-independent, are trained using 

each individual phoneme in the set (e.g., about 50 phonemes in English).  Monophone 

models do not take into account the coarticulatory effect, in which pronunciation of the 

current phone is strongly affected by its immediately preceding and following phones.  Thus, 

monophone models for many speech recognition tasks lead to less accurate performance. 

Context-dependent phone models have been widely used in most state-of-the-art speech 

recognition systems and give significantly improved performance because they capture the 

most phonetic coarticulation (Huang et al., 2001).  A common context-dependent phone 

model is the triphone, which takes into consideration both the left and right neighboring 

phones of the current phone.  For example, in the word red, a possible triphone may be [r-

e+d], where [r] and [d] are the preceding and following phones of the phone [e], “-” denotes 

the left context and “+” denotes the right context. 

2.2 Speaker Adaptation 

As introduced in Chapter 1, speaker adaptation (SA) adapts the pre-trained background 

model(s) to the ideal user specific (SD) system using much less data than that required to 
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train the SD model.  In HMM-based acoustic models, adaptation techniques change the 

mean (and possibly covariance) of Gaussian probability density functions (pdfs) (Huang et 

al., 2001).  Figure 2.3 illustrates speaker adaptation in an HMM-based acoustic model in a 

two-dimensional feature space.  Starting from the original Gaussian pdfs of the SI training 

data for an HMM on the left, the right shows the HMM is trained by SD data in an ideal 

situation and speaker adaptation is needed to move the distribution towards the SD model in 

practice. 

 

Figure 2.3  Speaker adaptation in acoustic model 

The challenge for model adaptation is that we can use only a small amount of observable 

data to modify model parameters. By obtaining a little information about the current 

speaker, a speech recognizer should be able to improve its performance by adapting to the 

characteristics particular to the current utterance.  Model-based speaker adaptation 

algorithms range from the traditional approaches such as Bayesian-based maximum a 

posteriori (MAP) (Gauvain and Lee, 1994) and the transformation-based maximum 

likelihood linear regression (MLLR) (Leggetter and Woodland, 1995) to rapid speaker 



14 

 

adaptation methods such as eigenvoice (EV) (Kuhn, 1998; Kuhn et al., 2000) and reference 

speaker weighting (RSW) (Hazen and Glass, 1997; Hazen, 2000). 

2.2.1 Maximum a Posteriori (MAP) – Bayesian-based Approach 

The problem of speaker adaptation is one of finding the most likely set of acoustic 

model parameters given the adaptation data.  We assume that an HMM is characterized by a 

parameter vector  , and prior knowledge about the vector is available and characterized by 

a prior probability density function, ( )p  , whose parameters are to be determined 

experimentally.  With a set of T observation vectors, 1 2, ,..., TO o o o , the MAP estimate is 

defined as 

 ˆ argmax ( | ) argmax ( | ) ( )MAP p O p O p
 

     . (2.19) 

If we have no prior information, then ( )p   is the uniform distribution, and the MAP 

estimate becomes identical to the maximum likelihood (ML) estimate.  A more accurate 

prior, ( )p  , makes MAP estimation more robust.  However, MAP does have the desirable 

property that it will eventually converge to the SD performance.  The MAP estimate for the 

parameters of HMMs can be implemented by the EM algorithm (Gauvain and Lee, 1994).  

The corresponding auxiliary function for Gaussian components is defined as 

 1

, ,

1ˆ( , ) log ( ) ( ) log | | ( ) ( )
2

T
MAP t jm t jm jm t jm

t j m

Q p jm o o              , (2.20) 

where ( )t jm  is the occupancy of component m  of state j .  To yield mathematically 

simple forms of MAP criterion, the prior distribution ( )p   should be a conjugate prior to 

the likelihood of the observations, assuming the Gaussian mixture weights and component 
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parameters are independent.  Then the mean vector of MAP can be re-estimated as 

 
( )

ˆ
( )

jm jm t tt
jm

jm tt

jm o

jm

  


 







, (2.21) 

where jm  is the prior mean vector, jm  is a balancing factor between prior mean and the 

ML mean (Gauvain and Lee, 1994). 

From equation (2.21), as the amount of adaptation data increases infinitely, the estimate 

converges to the ML estimate.  When the adaptation data is limited, an accurate prior mean 

vector jm  gives robust estimates.  A major limitation is that the MAP adaptation is a local 

approach to updating the model parameters.  Namely, only the model parameters that are 

observed in the adaptation data can be modified from the prior value.  When the system has 

a large number of free parameters, MAP approach can be very slow and is unsuitable for 

rapid adaptation. 

2.2.2 Maximum Likelihood Linear Regression (MLLR) – Transformation-based 
Approach 

Maximum likelihood linear regression (MLLR) uses a set of linear regression 

transformation functions to map both the mean vector and covariance matrix of a Gaussian 

mixture model in order to maximize the likelihood of the adaptation data (Leggetter and 

Woodland, 1995).  The mean vector   is transformed by: 

 ˆ A b W     , (2.22) 

where A  is a regression transformation matrix, b  is an additive bias vector,   is the 

extended mean vector as[1, ]T T , and W  is the extended transformation matrix [ ]b A .  

The same transformation can be used for all Gaussian components across all acoustic 
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models, or different transformations can be used for different groups of Gaussian 

components, called regression classes.  When the amount of adaptation data is limited or 

does not include the observations for certain acoustic models, the same transformation can 

be used for several distributions if they are in the same class that is grouped by similar 

acoustic characteristics. 

The transformation matrix W  is obtained using the EM algorithm (Leggetter and 

Woodland, 1995).  A standard auxiliary function for MLLR transform updates can be 

defined as  

 1

, ,

1ˆ( , ) ( )( ) ( )
2

T
MLLR t t jm jm t jm

t j m

Q jm o W o W         , (2.23) 

where ( )t jm  is the occupancy of component m  of state j .  The detailed solutions for 

estimating transformation of mean and variance using EM algorithm are derived in 

(Leggetter and Woodland, 1995) and (Gales and Woodland, 1996; Gales, 1998) respectively. 

MLLR has faster adaptation than MAP adaptation when the amount of adaptation data 

is small because of regression classes, but MLLR becomes less accurate than MAP as 

adaptation data size increases.  Although MLLR requires less adaptation data than MAP, it 

still needs over a minute of data in most spoken dialogue systems (Glass et al., 1996), which 

means MLLR is still not considered a rapid adaptation method. 

2.2.3 Rapid Speaker Adaptation – Model Combination Based Approach 

MAP and MLLR approaches have been studied for many years. Both require at least tens 

of seconds of adaptation data from the new speaker in order to perform better than a SI 

system.  In contrast, model combination-based adaptation performs effectively when the 

amount of adaptation data is only a few seconds, and so is called rapid adaptation. A model 
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combination-based approach, however, requires speaker-dependent models as reference 

speakers to start adapting to a new speaker, instead of using a speaker-independent model 

directly as in MLLR and MAP adaptation. 

The basic premise behind rapid adaptation shown in Figure 2.4 is that the model 

parameters of a new speaker can be approximated from a weighted combination of model 

parameters from different reference speakers. 

New Speaker

1

2 k

K

 

Figure 2.4  Model combination-base speaker adaptation 

Each reference speaker is represented by a supervector that is composed by 

concatenating the mean vectors of all acoustic models (Figure 2.5).  The ordering of means 

in the supervector must be the same across all speakers. 
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Figure 2.5  Supervector 

The mean vector for a new speaker can be estimated by 

 
1

ˆ
K

k k
k

w 


 , (2.24) 

where weights kw  are estimated from adaptation data. 

Eigenvoice (EV)(Kuhn, 1998; Kuhn et al., 2000) is a model combination-based 

adaptation technique.  The method was motivated by the eigenface approach in face 

recognition (Turk and Pentland, 1991).  The idea is to derive a small set of basis vectors 

called eigenvoices, considered to represent different voice characteristics (e.g., gender, age, 

accent, etc.), and each individual speaker is then a point in the eigenspace.  Eigenvoice 

employs principal component analysis (PCA) (Jolliffe, 2002) to find a set of orthogonal basis 

vectors for this purpose, and these eigenvectors are commonly known as eigenvoices.  These 

eigenvoices may be found by traditional linear PCA, or by nonlinear kernel PCA (Schlkopf 

et al., 1998) using a composite kernel, referred to as kernel eigenvoices (KEV) (Kwok et al., 

2003).  A new speaker is represented as a linear combination of a few (most important) 
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eigenvoices. 

Eigenvoice adaptation is illustrated in Figure 2.6 and is implemented as follows: 

1. Train a set of R  speaker-dependent models. 

2. For each SD model, concatenate all its mean vectors into a speaker supervector. 

3. Perform linear PCA on the supervectors using their correlation matrix. 

4. Arrange the eigenvectors in descending order of their eigenvalues and pick the top  

K  eigenvectors; as the required eigenvoices, ke , 1,2,...,k K . 

5. Represent a new speaker’s supervector, ̂  by a linear combination of the K chosen  

eigenvoices: 

 
1

ˆ
K

k k
k

w e


   (2.25) 

6. Estimate the eigenvoice weights by maximizing the likelihood of the adaptation data. 

 

Figure 2.6  Eigenvoice adaptation 
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In step 6 above, the eigenvoice weights kw  are estimated using the ML algorithm.  The 

auxiliary function is shown as 

 1

, ,

1ˆ( , ) ( ) log | | ( ) ( )
2

T

EV t jm t k k jm t k k
j m t k k

Q jm o w e jm o w e jm   
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   ,  (2.26) 

where ( )ke jm  represents the subvector of eigenvoice k  corresponding to the mean vector 

of mixture component m  of state j .  To maximize EVQ  in equation (2.26), set 0EV

k

Q

w


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
, 
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 1 1

, , , ,

( )[ ( )] ( ) [ ( )] ( )T T
t k jm t t k k jm k

j m t s m t k

jm e jm o jm w e jm e jm       . (2.27) 

Equation (2.27) can be rewritten as 

 v Qw , (2.28) 

where the left side of the equation is a K-dimensional vector, 
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where Q  is a K K  matrix, a coefficient at kth row and pth column is denoted as 

 1

, ,

( )[ ( )] ( )T
kp t p jm k

j m t

q jm e jm e jm   , (2.30) 

and the weight vector 1 2[ , ,..., ]TKw w w w is computed by 

 1w Q v . (2.31) 

This estimation process can be iterated until kw  converges. 
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2.2.4 Speaker Diarization 

Speaker adaptation deals with speaker variability when speaker changes occur between 

training and recognition.  Rapid adaptation is required in some applications where speakers 

turn quite frequently such as conversational telephone speech (CTS) and broadcast news 

(BN); however, the speaker identities are often difficult to trace in such applications. The 

task of automatic speaker diarization (ASD) focuses on finding speaker turns.  This section 

highlights the processes of speaker diarization as related to speaker adaptation. 

Speaker diarization or speaker segmentation and clustering is a task of marking where 

speaker changes occur in the detected speech and determining which associated segments of 

speech coming from the same speaker (Tranter and Douglas, 2006).  A typical speaker 

diarization system is illustrated in Figure 2.7.  The framework consists of tasks to perform 

speech detection, gender and/or bandwidth segmentation, speaker segmentation, and final 

boundary refinement. 
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Figure 2.7  Speaker diarization system 

Clustering lies at the heart of a speaker diarization system.  The goal of the clustering 

stage is to associate together segments of the same speakers.  Ideally, the process results in 

one cluster for each speaker and segments from a given speaker for one cluster.  A typical 

clustering method utilized in speaker diarization is hierarchical agglomerative clustering with 

a Bayesian information criterion (BIC) (Chen and Gopalakrishnam, 1998), widely used in 

statistics; or a modification of BIC (Pardo et al., 2007) as a stopping criterion.  The clustering 

stage consists of the following steps: 

Create cluster initializations using speech segments 

Compute pair-wise distances between clusters 

Merge the closest clusters 
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Update distances of remaining clusters to the new cluster 

Repeat steps 2-4 until stopping criterion is met. 

 The clusters are represented by a single full covariance Gaussian (Nguyen et al., 2002; 

Moh et al., 2003; Barras et al., 2004; Reynolds and Torres-Carrasquillo, 2004; Sinha et al., 

2005) or MAP-adapted GMMs (Moraru et al., 2003; Wooters et al., 2004; Meignier et al., 

2005).  The distance between the two clusters is measured using ∆BIC analysis.  The process 

is generally stopped when the lowest ∆BIC is higher than a specified threshold. 

2.3 Bioacoustics 

Bioacoustics, a cross-disciplinary field combining biology and acoustics, usually refers to 

the research of sound in non-human animals.  One major task in bioacoustics is the 

determination of a species’ repertoire of vocalizations (Cleveland and Snowdon, 1982; Berg, 

1983; Sjare and Smith, 1986).  Normally, this is achieved by analyzing spectrograms of the 

various vocalizations and then grouping similar sounds into a single call type.  Sounds are 

broken into types based on harmonic structure, pitch contour, whether the vocalization is 

pulsed, or other criteria.  Whenever possible, behavior recorded in conjunction with the 

vocalization is used to help distinguish between the different types of sounds.  Once the 

basic sound types are identified, a language structure can be hypothesized for those species 

whose vocalizations consist of a number of different syllables, such as bird or whale song 

(Clemins, 2005).  While there is no substitute for human experts in bioacoustics, automatic 

animal vocalization classification, adopting modern technologies in engineering areas, 

especially in speech processing, has made a significant contribution for analyzing animal 

vocalization (Sczewczyk et al., 2004). 
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In the last decade, Hidden Markov Models (HMMs) have been successfully applied to 

animal vocalization classification and detection in a number of species.  Kogan and 

Margoliash (1998) and Anderson et al. (1999) have shown that HMM-based classification is 

more robust to noise and more effective for highly confusable vocalizations than a dynamic 

time warping (DTW) approach applied to the indigo bunting (Passerina cyanea) and zebra 

finch (Taeniopygia guttata). Other species in which HMM-based classification has been 

investigated include African elephants (Loxodonta africana) (Clemins et al., 2005), beluga whale 

(Delphinapterus leucas) (Clemins and Johnson, 2005), ortolan bunting (Emberiza hortulana L.) 

(Trawicki et al., 2005), red deer (Cervus elaphus) (Reby et al., 2006), and rhesus macaques 

(Macaca mulatta) (Li et al., 2007). HMM-systems have been widely used to examine vocal 

repertoire, identify individuals, and classify vocalizations according to social context or 

behavior. 

The above automatic vocalization classification systems are caller-independent (CI), 

meaning that the vocalization examples used for training the classifier come from a different 

set of individuals.  Previous studies in animal vocalization analysis have found that individual 

vocal variability is one of the most important cues impacting vocalization related behavior 

study in bioacoustics (Reby et al., 2006).  Individual variability in acoustic structure has been 

described in many species such as bottlenose dolphins (Tursiops truncates) (Parijs et al., 2002; 

Janik et al., 2006), zebra finches (Taeniopygia guttata) (Vignal et al., 2004), and Belding's ground 

squirrels (Spermophilus beldingi) (McCowan and Hooper, 2002).  In ortolan buntings, song 

vocalization has been found to differ significantly between individuals in terms of repertoire 

content (Osiejuk et al., 2003) and tonality (Osiejuk et al., 2005).  Given the similarity to the 

speaker variability problem between SI and SD recognition systems in human speech, it is 
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possible to build analogous classification systems for animal vocalizations that are caller-

dependent (CD) or caller-adapted (CA).  This would imply that a CA system for animal 

vocalization analysis and classification should yield measurable improvements in overall 

accuracy and performance.  Because both the data collection and analysis/transcription 

processes are much more difficult and time-consuming for most animal species than for 

human speech, utilizing a CA system to reduce the overall data requirements for developing 

automated classification systems may result in significant cost-savings. 
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C H A P T E R  3  EIGEN-CLUSTERING 

In model-combination based speaker adaptation, a set of speaker-dependent models are 

required as reference speakers to be selected for adapting.  Those speaker-dependent models 

are pre-trained with a priori knowledge of the speakers and the utterances associated with 

each of them in the training data.  However, speaker identities are not always available in the 

real world when there are a large number of different speakers and many switches between 

them, such as broadcast news.  This chapter introduces a new method, eigen-clustering, to 

adapt the speaker-independent models regardless of speaker identities. 

3.1 Motivation 

The eigen-clustering method is motivated by principal component analysis (PCA), which 

is a mathematical tool that transforms a large number of correlated variables into a smaller 

size of uncorrelated variables called principal components (Jolliffe, 2002).  In eigen-

clustering, those variables are the utterances in the speaker-independent training set, instead 

of the reference speakers as in the eigenvoice method, and PCA separates the most 

uncorrelated utterances.  The basic idea here is to map the original model space to the 

eigenspace, so that each point in eigenspace represents the associated utterance.  The 

mapping shifts and rotates the original axis in the model space to represent as much of the 

variability among the utterances as possible in the eigenspace.  Figure 3.1 illustrates the first 

principal component for three utterances in a two-dimensional model space to optimally 

separate the three utterances.  The first principal component accounts for the largest 

variation among the training utterances, and each succeeding component represents as much 

of the remaining variation as possible.  This also implies the meaning of the term “principal” 
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in PCA, which the lower-order principal components are more important than the higher-

order ones.  PCA can use these lower-order components in eigenspace to sufficiently 

describe the characteristics of all utterances in the original model space.  This property of 

PCA makes the calculation more efficient in a dimensionality reduction sense. 

 

Figure 3.1 The first principal component for three utterances in 2-D model space 

3.2 System Design 

Assume there are N  utterances in a training set, but no knowledge of speaker identities.  

Suppose each utterance was spoken by one of the P  speakers, where N P ; and P  is 

unknown.  The eigen-clustering speaker adaptation is illustrated in Figure 3.2, and the 

implementation is as follows. 

Train an SI model using the N  utterances. 

Adapt each utterance using MAPLR (MLLR + MAP) to build an acoustic model per 

utterance. 
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Construct a mean supervector for each utterance. 

Compute the principal components using PCA, and choose the top K  principal 

components ( K N ) as the eigen-clusters kc , 1,2,...,k K . 

Calculate a new speaker’s supervector, ̂ , by a linear combination of the K  picked 

clusters: 

 
1

ˆ
K

k k
k

w c


  , (3.1) 

where kc , eigen-cluster weights are estimated by maximizing the likelihood of the adaptation 

data of the new speaker. 

Create the new speaker’s acoustic model by substituting the mean vectors in the SI 

model with the new speaker’s supervector. 
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Figure 3.2  Eigen-clustering speaker adaptation 
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The MAPLR (Chesta et al., 1999; Chou, 1999) is an approach to combine both the 

MLLR and MAP methods in step 2.  Comparing Sections 2.2.1 and 2.2.2, the MLLR has a 

faster adaptation in terms of the amount of adaptation data than the MAP, whereas the 

MAP becomes more accurate with the increased amount of adaptation data.  The MAPLR 

integrates the advantages of both the MLLR and MAP utilizing MLLR as “a prior” in MAP 

adaptation.  By substituting the prior mean vector µjm in equation (2.21) with the equation 

(2.22), the mean vector of MAPLR is estimated as 

 
( ) ( )

ˆ
( )

jm jm t tt
jm

jm tt

A b jm o

jm

  


 
 







. (3.2) 

An acoustic model is then adapted using the smallest data possible in the speaker-

independent training set, only one utterance.  Although MAPLR is not for rapid adaptation 

in terms of a few seconds of adaptation data, it updates all the means (variances are not 

included because the supervectors are built on the means only) in the HMM towards the 

model.  One advantage of using MAPLR adaptation for each of the utterances is to force the 

mean vectors of each utterance model into the same order, which guarantees that no mean 

vectors will be misplaced in concatenating to supervectors. 

After all supervectors are constructed in step 2, they are grouped into a D N  

supermatrix X , where the columns are N  supervectors with each of dimension D .  Then 

an N N  covariance matrix C  (3.3) is calculated from the supermatrix X  as 

 [( )( ) ]TC E X X X X   , (3.3) 

where E  is the expectation operator, and each column of X is the vector obtained by 

averaging over all N  supervectors.  Each covariance coefficient ( , )C i j , the ith row and jth 

column in the covariance matrix C , indicates the degree of statistical dependence between 
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the i  and j  pair of the supervectors.  Given the covariance matrix C , the PCA 

transformation of X  is 

 TY V X , (3.4) 

which obtaining the data matrix Y  in a new coordinate eigenspace defined by the 

eigenvectors that are the rows of the matrix TV . 

TV can be computed by singular value decomposition (SVD), which is one the most 

common implementation of PCA in computer programs.  Given the covariance matrix C , 

the SVD form is 
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where the rows of V  form a set of orthonormal eigenvectors, and the diagonal matrix S  

contains the eigenvalues in descending order.  The first k  principal components are chosen 

from the first k  rows of V . 

Although PCA is defined in terms of the covariance matrix, the correlation matrix has 

also been widely used.  The magnitude of the covariance matrix C  depends on the standard 

deviations of the each pair of supervectors.  The correlation matrix R  has the same 

dimension as the covariance matrix C .  The correlation coefficient, the component in the 

correlation matrix R , is defined as 

 
( , )

( , )
( , )

C i j
R i j

i j
 , (3.6) 

where ( , )i j , the ith row and jth column component of the standard deviation matrix  , is 
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calculated by 

 2 2 2 2( , ) [( [ ] )( [ ] ) ]( , )Ti j E X X E X X i j    . (3.7) 

The correlation coefficient ( , )R i j  is a normalized covariance coefficient scaling the degree 

of dependence between the i and j pair of the supervectors on the interval from -1 to +1. 

In step 5, the eigen-cluster weights kw are estimated using the same algorithm (maximum 

likelihood) as in the eigenvoice method.  The auxiliary function of eigen-cluster weights is 

 1

, ,

1ˆ( , ) ( ) log | | ( ) ( )
2

T

EC t jm t k k jm t k k
j m t k k

Q jm o w c jm o w c jm   
                    

   , (3.8) 

where ( )kc jm  represents the subvector of eigen-cluster k  corresponding to the mean 

vector of mixture component m  of state j .  After maximization of ECQ  in equation (3.8) 

by setting 0EC

k

Q

w





, the re-arranged equation becomes 

 1 1

, , , ,

( )[ ( )] ( ) [ ( )] ( )T T
t k jm t t k k jm k

j m t s m t k

jm c jm o jm w c jm c jm       . (3.9) 

Equation (3.9) can be written in the format 

 v Qw , (3.10) 

where w  contains K  coefficients of the eigen-cluster model needed to be estimated 

 1 2[ , ,..., ]TKw w w w . (3.11) 

The vector v  on left hand side of the equation is a 1K   vector, 
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and Q  in the right hand side is a K K  matrix with a coefficient at the kth row and pth 

column determined by 

 1

, ,

( )[ ( )] ( )T
kp t p jm k

j m t

q jm c jm c jm   . (3.13) 

 The eigen-cluster weight vector w  is calculated by 

 1w Q v . (3.14) 

The weight vector can be estimated iteratively for better convergence.  According to the EM 

algorithm in Section 2.1.2, maximizing the ECQ  function in equation (3.8) is equivalent to 

maximizing the likelihood ( | )P O   in equation (2.2) for each iteration.  The new HMM 

parameter vector ̂  is derived from the parameter vector   in the previous iteration, the 

process guarantees a monotonic likelihood improvement on each iteration, and eventually 

the likelihood converges to a local maximum (Dempster et al., 1977).  The EM algorithm for 

the eigen-clustering can be described as follows. 

Step 1. Initialization: HMM parameter vector   is obtained using MAPLR for each  

       utterance. 

Step 2. E-step: Compute auxiliary function ˆ( , )ECQ   in equation (3.8) based on  . 

Step 3. M-step: Compute ̂  according to the re-estimation equations (3.12) - (3.14) to  

       maximize the auxiliary ECQ  function. 

Step 4. Iteration: Set ˆ  , repeat from step 2 until convergence. 

The aim of the eigen-clustering adaptation is to enable model-combination based rapid 

speaker adaptation without explicit speaker knowledge on speaker-dependent models, 

opposite of its counterpart, eigenvoice adaptation.  The eigen-clustering method has the 
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same adaptation requirements (e.g., speaker-independent training data only) as any generic 

speech recognition task, or basic adaptation such as MLLR. 

In addition to finding the principal components to represent the most diverse acoustic 

characteristics of the HMMs, eigen-clustering plays the role of clustering speakers, which is 

unnecessary in the eigenvoice method.  Although both eigen-clustering and eigenvoice use 

PCA, their meanings in the eigenspace are totally different.  In the eigenspace, each point of 

eigen-clustering represents the projection of the associated utterance in the model (feature) 

space, whereas each point of eigenvoice is the map of the corresponding speaker from the 

model space. 

The idea of eigen-clustering can be definitely tied to the unsupervised speaker clustering 

task, which tries to find the identity of speakers from the unlabeled data.  Comparing to the 

strict speaker clustering task, eigen-clustering has a looser requirement, since speaker 

adaptation does not need explicit identity labeling.  The estimate of the number of speakers 

is implicitly carried out by PCA, which is a dimensional reduction technique.  The concept of 

PCA, which keeps the lower-order eigenvectors and throws away the higher-order ones, is a 

key in eigen-clustering to reduce computational cost in the following model training step. 

Motivated by the MAPLR adaptation method, it is possible to combine eigen-clustering 

with the MAP method.  Although MAPLR combines the advantages of both the MLLR and 

MAP, it is still not rapid adaptation on the scale of a few seconds.  By using eigen-clustering 

prior to MAP adaptation, it would be possible to both obtain rapid adaptation and still allow 

continually increasing accuracy as adaptation data increases.  To implement this, the mean 

vector of the eigen-clustering can be combined with MAP by substituting the prior mean 

vector jm  in equation (2.21) with the equation (3.1), 
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where EC  denotes the mean calculated using the eigen-clustering. 
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C H A P T E R  4  EXPERIMENTS 

In this chapter, experiments concerning rapid speaker adaptation with adaptation data of 

less than a minute are presented.  The experimental evaluation consists of two different task 

domains.  The first is conducted on a medium vocabulary human speech recognition task, 

while the second is conducted on an animal vocalization classification task.  The former is to 

show the new eigen-clustering method useful in human speech technology, and the latter is 

to demonstrate the contribution to a more specialized applied task in bioacoustics. 

The experimental setups, including the training, evaluation and adaptation datasets, 

extracting the acoustic features, building of the acoustic models, are fundamentally the same 

for both the aspects.  The adaptation is done offline as all adaptation data is available, and in 

a supervised mode as all data is transcribed by human experts.  The comparisons between 

the proposed and other state of the art adaptation techniques are illustrated. 

4.1 Implementation 

Implementation of the new eigen-clustering speaker adaptation technique was done 

using the HTK library framework (Young et al., 2002).  The eigenvoice adaptation method 

for comparison was implemented by modifying HTK.  Existing HTK tools were used to 

evaluate MLLR, MAP, and MAPLR techniques.  The code for SVD, which is used to 

implement PCA, is modified from the LAPACK routines (Anderson et al., 1999). 

The software has three layers with different programming languages.  The core layer 

consists of the modified HTK code, in C.  The middle layer used to capsulate HTK tools, 

options and configuration parameters is done in Perl.  And the top layer is a scripting layer in 

Matlab. 
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4.2 Human Speech 

4.2.1 Data Corpus 

The experiments for human speech used the DARPA 1000-word Resource Management 

continuous speech database part 1 (RM1) (Price et al., 1993) with a variety of American 

English dialects in reading sentences.  RM1 includes three portions, speaker-independent 

(SI) training data, speaker-dependent (SD) training data, and development and evaluation 

data.  The data was recorded at 16 kHz, with 16-bit resolution, using a Sennheiser HMD-414 

headset microphone. 

The speaker-independent training set contains 3990 utterances from 109 speakers, a 

combination of the 72 training set speakers and the 37 development set speakers.  Since this 

research emphasizes speaker adaptation, the speaker-independent evaluation set is used for 

all experiments here.  The speaker-dependent set consists of 12 speakers, each having a set 

of 600 utterances for speaker-dependent training, 10 utterances (average 3 seconds per 

utterance) for rapid adaptation task, and 100 utterances for evaluation.  Table 4.1 shows the 

detailed descriptive statistics of the data setup for training, testing and rapid adapting. 

 
 

SI Training 
Set 

SD Training 
Set 

Test Set 
Rapid 

Adaptation 
Set 

Number of Speakers 109 12 12 12
Number of Utterances 3990 600×12 100×12 10×12

Mean Utterances/Speaker 36.6 600 100 10
Table 4.1  Distribution of the number of speakers, utterances, and the average 

utterances per speaker for training, test and rapid adaptation sets 
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4.2.2 Acoustic Modeling and Feature Extraction 

Three different acoustic models were built and tested: single Gaussian monophones, 4-

mixture Gaussian context-independent monophones, and single Gaussian context-

dependent triphones.  Each phoneme model was a left-to-right 3-state hidden Markov 

model (HMM).  In addition, there was a 1-state short pause model and a 3-state silence 

model. 

The acoustic feature vector has 39 components, consisting of 12 mel-frequency cepstral 

coefficients (MFCCs) (Huang et al., 2001) and the normalized log energy along with their 

first and second order derivations, extracted from each utterance using 25ms Hamming 

windows with a 10ms step size. 

4.2.3 Experimental Procedure 

For each of three acoustic models in Section 4.2.2, a baseline speaker-independent 

system (Figure 4.1) was constructed by pooling the 3990 utterances for all 109 speakers in 

the SI training set; and 12 speaker-dependent models (Figure 4.2) were built using the 600 

utterances associated each of the 12 speakers in the SD training set. 
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Figure 4.1  Speaker-independent system for RM dataset 

 

Figure 4.2  Speaker-dependent system for RM dataset 

The speaker-adapted systems (Figure 4.3) using MLLR, MAP, and MAPLR respectively 
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were implemented on the SI model, with the 12 subjects in SD data set treated as new 

speakers.  For better performance, all three methods included both mean and variance 

adaptation. 

 

Figure 4.3  Speaker-adapted system for RM data 

To investigate the properties of the eigenvoice adaptation, additional speaker-dependent 

models were required.  From the SI model, 109 “SD” models were obtained from the SI 

training set using MAPLR adaptation.  The 109 models were not trained in a traditional way 

with a large amount of data, e.g., 600 utterances, because 30 – 40 utterances for each speaker 

were not sufficient. However, that amount of data was enough to build a sufficiently well-

trained system using adaptation.  The 109 models were treated as “SD” for this case. 

For the eigen-clustering adaptation, 3990 models were estimated for all utterances in the 

SI training set using MAPLR adaptation.  Rather than building a model close to the SD one 

as in the eigenvoice approach, the main objective for using the MAPLR method here is to 

align the all phoneme mean vectors in the same order for concatenating to supervectors later 
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on. 

For each of 12 speakers in the SD data set, 10 sets of adaptation data ranging from 1 to 

10 utterances of the rapid adaptation set (e.g., set 1 has 1 utterance, set 2 has 2 utterances, 

etc.), were randomly selected.  To observe the properties of MAP, MLLR and MAPLR 

methods with large amount of adaptation data, all 600 utterances from each of 12 speakers 

were used in 7 sets including 50, and 100 – 600 in increments of 100 utterances.  All of the 

above adapted models were tested on the 100 evaluation utterances in the SD data set using 

a word-pair grammar (Derr and Schwartz, 1989).  The final results are the averages of 

experiments over all 12 speakers.  All adaptation techniques were in supervised mode, which 

means the correct transcriptions for adaptation utterances were used during adaptation 

process.  PCA implementations on the both correlation and covariance matrix were 

compared in the experiments for both eigenvoice and eigen-clustering adaptation. 

4.2.4 Single Gaussian Monophone Models 

The MLLR, MAP and MAPLR adaptation results are shown in Figure 4.4.  Given the 

non-linearity of number of utterances (horizontal axis), the ranges for rapid adaptation 

(fewer than 10 utterances) and normal adaptation are separated by the vertical green bar.  

The baseline SI system with single Gaussian monophone HMMs has an accuracy of 76.1%, 

and the SD system has an accuracy of 89.2%.  All three adaptation methods improve the 

accuracy slightly over the baseline with only one adaptation utterance (average utterance 

length is 3-second).  The MAP adaptation shows consistent improvement with incrementing 

adaptation data size.  MAPLR performs similar to MLLR because it uses the MLLR adapted 

model as a prior in MAP.  Both MLLR and MAPLR have degraded performance to the 
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baseline SI system in the range of 2 – 5 adaptation utterances, because the insufficient 

adaptation data makes the estimation of the transformation matrix W in equation (2.22) at 

each regression class inaccurate (Leggetter and Woodland, 1995).  All three methods have 

very similar accuracies near 82% using the full size rapid adaptation data.  The MAP 

becomes more accurate than both the MLLR and MAPLR when the amount of adaptation 

data increases to 100 utterances per speaker because all the model parameters are updated 

with the MAP. The MAP approaches the accuracy of the SD system faster than MAPLR 

with the full 600 utterances of adaptation data, while the MLLR becomes saturated.  The 

properties of all three adaptation methods can be observed in both the rapid adaptation (10 

utterances) and normal adaptation (up to 600 utterances) in Figure 4.4.  This research 

emphasizes on the rapid speaker adaptation, so only up to 10 utterances of adaptation data is 

used for the rest of experiments in this section. 
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Figure 4.4  Performance of SI, SD, MLLR, MAP and MAPLR adaptation 

The recognition accuracies for eigenvoice adaptation using PCA derived, from both 

correlation and covariance matrices, as a function of adaptation data size and eigenspace 

dimensions (number of eigenvoices) are compared in Figure 4.5.  The number of eigenvoices 

includes 1 to 15, 20 – 100 in increments of 10; as well as all 109 reference speakers.  These 

same results are also displayed in Table A.1 and Table A.2 respectively.  The accuracy range 

is from 76.3% to 79.2% for the PCA correlation implementation, and from 79% to 82% for 

the covariance implementation.  The covariance implementation shows clearly higher 

accuracies over the correlation approach at almost every point.  The accuracy surfaces of the 

both implementations are relative flat with increasing number of adaptation utterances, 

plateauing after 2 – 3 utterances. 

Rapid adaptation Normal adaptation 
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Figure 4.5  Eigenvoice performance comparison on PCA correlation matrix vs. 
covariance matrix 
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Similarly, the proposed eigen-clustering adaptation evaluation results are shown in Figure 

4.6.  The number and the scale of eigen-clusters are the same as in the experiments for the 

eigenvoice adaptation for comparison purposes.  The largest number of eigen-clusters in the 

experiment is 109 to equal the total number of reference speakers.  The number of selected 

clusters would be unlikely to be so high in practice, because one of properties of PCA is to 

reduce data dimensions.  The PCA correlation approach in Table A.3 gives the recognition 

accuracies in a range of 72.3% to 79.3%, while the covariance one in Table A.4 shows the 

results from 70.3% to 80.9%.  As before, the covariance implementation has overall better 

performance than the correlation one. 
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Figure 4.6  Eigen-clustering performance comparison on PCA correlation matrix 
vs. covariance matrix 
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Figure 4.7 shows the eigen-clustering (EC) and eigenvoice (EV) adaptations 

implemented by PCA on the covariance matrix, with the numbers of clusters/voices selected 

as 5, 10, 15, 20, and 30 and appended after EC/EV.  Under the same amount of adaptation 

data, the overall performance of eigenvoice adaptation (blue lines in Figure 4.7) is better than 

the eigen-clustering method (green lines in Figure 4.7) by about 2%.  This shows that the 

knowledge of the reference speakers available in the eigenvoice method gives more explicit 

acoustic characteristics than the reference utterances. 

 

Figure 4.7  Performance of Eigenvoic and Eigen-clustering adaptation 

A comparison of eigen-clustering with 30 clusters (EC30) and eigenvoice with 30 voices 

(EV30) to the other three adaptation methods is shown in Figure 4.8.  Both eigen-clustering 
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and eigenvoice methods outperform the other three when 4 or fewer adaptation utterances 

(about 12 seconds) are used.  The eigen-clustering method gives higher accuracies than 

MLLR and MAPLR with up to 6 utterances (about 18 seconds), whereas eigenvoice shows 

better results than MLLR and MAPLR with about 7 utterances (21 seconds).  Note that 

eigenvoice is shown for reference but is not directly comparable since the eigenvoice method 

requires the speaker identities but none of the other methods do, including eigen-clustering.  

When eigen-clustering is combined with MAP (red line in Figure 4.8, EC30+MAP, shows 

the eigen-clustering with 30 clusters as the prior in MAP), the performance is not only better 

than the other three in the range of 1 – 9 utterances but also shows the potential in 

consistently improving when the amount of adaptation data increases.  Table A.5 shows the 

detailed accuracies in number in Figure 4.7 and Figure 4.8. 
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Figure 4.8  Performance of six adaptation methods 

4.2.5 Four-Mixture Gaussian Monophone Models 

This section demonstrates the performance of the proposed eigen-clustering method for 

4-mixture Gaussian monophone HMMs. 
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Figure 4.9  Performance of SI, SD, MLLR, MAP and MAPLR adaptation 

The performance of the three adaptation methods MLLR, MAP and MAPLR along with 

SI and SD systems is shown in Figure 4.9.  The ranges for rapid adaptation and normal 

adaptation are separated by the vertical green bar using non-linear scale of number of 

utterances (horizontal axis).  Comparing to the performance of single Gaussian monophone 

HMMs in Figure 4.4, the 4-mixture Gaussian HMMs show an absolute improvement of 10% 

over the baseline SI and 5% over the SD system.  All three adaptation methods improve 

accuracy slightly over the baseline when only one adaptation utterance is used.  The MAP 

adaptation shows the improvement more consistently than the others with incrementing 

adaptation data size.  All three methods have very close accuracies when there are more than 

Rapid adaptation Normal adaptation 
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6 utterances (about 18 seconds) for adapting.  The highest accuracy from the three methods 

with all 10 utterances still does not approach that of the SD system.  In normal adaptation 

data in a range of 50 to 600 utterances per speaker, all three methods show the same manner 

of performance as in the single Gaussian monophone, where MAP outperforms over the 

other two when more than 200 utterances of adaptation data are used, and approaches the 

accuracy of the SD system faster than MAPLR, while MLLR becomes saturated with the full 

600 utterances. 

The performance of eigenvoice adaptation using PCA derived from both correlation and 

covariance matrices as a function of adaptation utterances and eigenspace dimensions 

(number of eigenvoices) are compared in Figure 4.10.  In the same manner as in Section 

4.2.4 for single Gaussian monophone HMMs, the number of eigenvoices is chosen from 1 

to 15, 20 – 100 in increments of 10, as well as for all 109 reference speakers.  The detailed 

results are also displayed in Table A.6 and Table A.7 respectively.  The accuracy range is 

from 86.7% to 87.6% for the PCA correlation implementation, and from 87.5% to 89.3% 

for the covariance implementation.  The covariance implementation shows clearly higher 

accuracies over the correlation approach at almost every point.  The accuracy surfaces of the 

both implementations are relatively flat with increasing number of adaptation utterances, 

plateauing after 2 – 3 utterances. 
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Figure 4.10  Eigenvoice performance comparison on PCA correlation matrix vs. 
covariance matrix 
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For the proposed method, eigen-clustering adaptation evaluation results are shown in 

Figure 4.11.  The number and the scale of eigen-clusters are in the same setup as in the 

experiments for the single Gaussian HMMs.  The PCA correlation approach in Table A.8 

gives the recognition accuracies in a range of 86.3% to 86.7%, while the covariance one in 

Table A.9 shows the results from 86.1% to 88%.  The covariance implementation has overall 

better performance than the correlation one as before. 
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Figure 4.11  Eigen-clustering performance comparison on PCA correlation matrix 
vs. covariance matrix 
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The performance of eigen-clustering (EC) and eigenvoice (EV) adaptations is shown in 

Figure 4.12.  The both methods are implemented by PCA on the covariance matrix with the 

numbers of the clusters/voices selected as 5, 10, 15, 20, and 30.  Under the same amount of 

adaptation data, the overall performance of eigenvoice adaptation (blue lines in Figure 4.12) 

with knowledge of speaker identities is better than the eigen-clustering method (green lines 

in Figure 4.12) by about 2%. 

 

Figure 4.12  Performance of Eigenvoic and Eigen-clustering adaptation 

A comparison between eigen-clustering with 30 clusters (EC30) and the other adaptation 

methods is illustrated in Figure 4.13.  The eigenvoice adaptation with 30 voices (EV30) 

outperforms the other three when 5 or fewer adaptation utterances (about 15 seconds) are 
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used, whereas the eigen-clustering adaptation is slightly better when one or two adaptation 

utterances are used.  When eigen-clustering with 30 clusters is combined with MAP (red line 

in Figure 4.13), the performance is not only better than the other three in the range of 1 – 6 

utterances but also shows the potential in consistently improving when the amount of 

adaptation data increases.  The detailed accuracy results in Figure 4.12 and Figure 4.13 are 

displayed in Table A.10. 

 

Figure 4.13  Performance of six adaptation methods 

4.2.6 Single Gaussian Triphone Models 

In sections 4.2.4 and 4.2.5, context-independent HMM systems were evaluated. In this 
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section, a context-dependent HMM triphone system is implemented to fully investigate the 

properties of the eigen-clustering method. 

 

Figure 4.14  Performance of SI, SD, MLLR, MAP and MAPLR adaptation 

The performance of the three adaptation methods MLLR, MAP, and MAPLR along 

with SI and SD systems is shown in Figure 4.14.  The ranges for rapid adaptation and 

normal adaptation are split by the vertical green bar using non-linear scale of number of 

utterances (horizontal axis).  Comparing to the performance of the 4-mixture Gaussian 

HMMs in Figure 4.9, the single Gaussian triphone HMMs show absolute improvement of 

2% over the baseline SI and a similar result in the SD system.  All three adaptation methods 

improve accuracy over the baseline in any conditions.  The MAP adaptation shows the 

Rapid adaptation Normal adaptation 
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improvement more consistently than the others with incrementing adaptation data size.  All 

three methods have the very close accuracies when there are 3 and less utterances (about 9 

seconds) for adapting.  The highest accuracy from the three methods with all 10 utterances is 

close to the SD system.  In normal adaptation data ranging from 50 to 600 utterances per 

speaker, all three methods show the same manner of performance as in the context-

independent systems, with the MAP outperforming the other two when more than 200 

utterances of adaptation data are used.  In the first case, the MAP is superior over the 

speaker-dependent system and the MLLR and MAPLR nearly tie the SD, while the MLLR is 

not as obviously saturated as before. 

The performance of eigenvoice adaptation using PCA derived from both correlation and 

covariance matrices as a function of adaptation utterances and eigenspace dimensions 

(number of eigenvoices) are compared in Figure 4.15.  In the same manner as in the 

experimental sections for context-independent HMMs, the number of eigenvoices includes 1 

to 15, 20 – 100 in increments of 10, as well as all 109 reference speakers.  The detailed results 

are also displayed in Table A.11 and Table A.12 respectively.  The accuracy range is from 

87.6% to 90.5% for the PCA correlation implementation, and from 90.1% to 93.2% for the 

covariance implementation.  The covariance implementation shows clearly higher accuracies 

over the correlation approach at almost every point.  The accuracy surfaces of the both 

implementations are relatively flat with increasing number of adaptation utterances, 

plateauing after 2 – 3 utterances. 
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Figure 4.15  Eigenvoice performance comparison on PCA correlation matrix vs. 
covariance matrix 
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Figure 4.16 shows the evaluation results for the eigen-clustering adaptation.  The number 

and the scale of eigen-clusters are in the same setup as in the experiments for the context-

independent HMMs.  The PCA correlation approach in Table A.13 gives the recognition 

accuracies in a range of 84.1% to 91.3%, while the covariance one in Table A.14 shows the 

results from 82.2% to 92.9%.  The covariance implementation has overall better 

performance than the correlation one as before. 
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Figure 4.16  Eigen-clustering performance comparison on PCA correlation matrix 
vs. covariance matrix 
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Figure 4.17 shows the performance of eigen-clustering and eigenvoice adaptations, both 

are implemented by PCA on the covariance matrix with the numbers of the clusters/voices 

selected as 5, 10, 15, 20, and 30.  Under the same amount of adaptation data, the overall 

performance of eigenvoice adaptation (blue lines in Figure 4.17) is better than the eigen-

clustering method (green lines in Figure 4.17) by about 2%. 

 

Figure 4.17 Performance of Eigenvoic and Eigen-clustering adaptation 

A comparison of eigen-clustering with 30 clusters and eigenvoice with 30 voices to the 

other three adaptation methods is shown in Figure 4.18.  The both eigenvoice and eigen-

clustering adaptation methods outperform the other three when 3 or fewer adaptation 

utterances (about 9 seconds) are used.  When eigen-clustering with 30 clusters is combined 

with MAP (red line in Figure 4.18), the performance is not only better than the other three 
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in the range of 1 – 3 utterances but also shows the potential in consistently improving when 

the amount of adaptation data increases.  The performance accuracies are illustrated in Table 

A.15. 

 

Figure 4.18  Performance of six adaptation methods 

4.3 Animal Vocalization 

Automatic systems for animal vocalization classification often require fairly large 

amounts of data to build models.  However, animal vocalization data collection and 

transcription is a difficult and time consuming task, so that it is expensive to create large 

datasets.  One natural solution to this problem is the use of acoustic adaptation methods. 

Such methods, common in human speech recognition systems, create initial models trained 

on speaker independent data, then use small amounts of adaptation data to build individual-
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specific models.  Since, as in human speech, individual vocal variability is a significant source 

of variation in bioacoustic data, acoustic model adaptation is naturally suited to classification 

in this domain as well. 

4.3.1 Subjects and Data 

Ortolan buntings (Emberiza hortulana L.) as a species have declined steadily the last fifty 

years in Western Europe, and have been listed as critically endangered on the Norwegian 

red-list.  The population size is now only about 100 singing males and declines an average of 

8% annually (Dale, 2001).  The initial decline of the Norwegian population was probably due 

to the habitat loss related to changes in agriculture practices (Dale, 2001).  However, ten 

years of intensive study revealed that the main reason for the continuous decrease is female-

biased dispersal pattern, which in isolated and patchy population seriously affects sex ratio, 

behavior of males and breeding success measured at the population level (Dale, 2001).  It is 

hoped that increasing our understanding of male ortolan bunting vocalizations will enable us 

to better understand breeding behavior and reduce the risk of extinction. 

Norwegian ortolan bunting vocalizations were collected from County Hedmark, Norway 

in May of 2001 and 2002 (Osiejuk et al., 2003).  The birds covered an area of approximately 

500 km2 on twenty-five sites, and males were recorded on eleven of those sites.  A team of 

one to three research members who recognized and labeled the individual male buntings 

visited the sites.  Overall, the entire sample population in 2001 and 2002 contains 150 males, 

115 of which were color-ringed for individual identification. Because there are no known 

acoustic differences between the ringed and non-ringed males, all data was grouped together 

for experimental use. 
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Ortolan buntings communicate through fundamental acoustical units called syllables 

(Osiejuk et al., 2003, 2005).  Figure 4.19 depicts the 19-syllable vocal repertoire used in this 

dataset. Individual songs are grouped into song type categories, e.g. ab, cb, that indicate the 

sequence of syllable types present.  Each song type has many specific song variants, e.g. 

aaaab, aaabb, which indicate the exact repetition pattern. Figure 4.20 shows spectrograms of 

three specific type ab songs, song variants aaaab, aaabb and aaaabb.  The waveforms in Figure 

4.19 and Figure 4.20 are low background noise exemplars, taken from different individuals 

to illustrate the repertoire. 

Syllable repertoire of ortolan bunting
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Figure 4.19  Complete set of the 19-syllable repertoire of ortolan bunting. 
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Song type ab
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Figure 4.20  ab-type song variation in ortolan bunting 

The vocalizations were recorded in the morning hours between 04:00 and 11:00 in each 

site, using a HHB PDR 1000 Professional DAT recorder with a Telinga V Pro Science 

parabola, a Sony TCD-D8 DAT recorder with a Sennheiser ME 67 shotgun microphone or 

an Aiwa HS-200 DAT recorder with a Sennheiser ME 67 shotgun microphone.  All 

recordings were digitally transferred from Technics SV-DA 10 recorder via a SPDIF cable to 

a PC workstation with SoundBlaster Live! 5.1 at a sampling rate of 48 kHz with 16-bit 

quantization.  For a more detailed description of the methods used to record the 

vocalizations, see Osiejuk et al. (Osiejuk et al., 2003, 2005). 
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4.3.2 Data Organization 

The data set used here is a subset of the data (Osiejuk et al., 2003, 2005) including 60 

song types and 19 syllables from 105 individuals.  In selecting data for this study, calls 

containing syllables that were identified in only a single individual or a single song type were 

not included.  Different individuals were selected for the training and testing/adaptation 

sets, balanced to get full coverage of all syllables in each set.  

The protocol used to separate the data into training, test and adaptation sets is as follows 

(Tao and Johnson, 2008): 

1. Choose calls containing syllables identified in more than a single individual or a 

single song type.  This gives a resulting data set of 105 individuals, 60 call types and 

19 syllables. 

2. Select individuals for testing/adaptation. 

a. Sort song types in ascending order according to number of examples. 

b. Starting with the least common song type, select the individual with the 

highest number of examples in that song type (minimum 2 examples). 

c. Repeat this process for each song type until the individuals selected for 

testing cover all 60 types. 

This results in a set of 30 individuals for testing/adaptation. 

3. Create explicit test and adaptation data sets by randomly dividing the data into test 

and adaptation sets for each selected individual, subject to a maximum of 30 

vocalizations in each set for any one individual and song type. 

4. Group the remaining individuals into a caller-independent training data set, again 

reducing the number of examples to a maximum of 30 for any one individual and 
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song type. 

Descriptive statistics of the resulting training, test, and adaptation sets are shown in 

Table 4.2.  From the process detailed above it is clear that the 75 individuals in the training 

set are disjoint from the 30 individuals in the test/adaptation data, while the test and 

adaptation sets share the same group of individuals. All three sets have a full representation 

of syllables.  Note that the training set does not cover the full range of 60 song types, but is 

still sufficient for training syllable-level HMMs for classification, as discussed in the next 

section.  The size of the adaptation set is the same as that of the test set to allow the data to 

be used for training caller-dependent models as well as to allow a large range of variation for 

examining the impact of adaptation data quantity on performance. 

 
   Training Set Test Set Adaptation Set

Number of Individuals 75 30 30
Number of Song Types 53 60 60

Number of Syllables 19 19 19
Number of Vocalizations 2039 864 886

Mean Vocalizations/Caller 27.2 28.8 29.5
Mean Vocalizations/Type 38.5 14.4 14.8

Mean Vocalizations/Syllable 107.3 45.5 46.6
Table 4.2  Distribution of the number of individuals, song-types and 

vocalizations, and vocalizations with associated frequencies on individual, song-type 
and syllable for training, test and adaptation sets. 

4.3.3 Feature Extraction and Acoustic Modeling 

The acoustic features used in this classification system are Greenwood Function Cepstral 

Coefficients (GFCCs) (Clemins and Johnson, 2006; Clemins et al., 2006).  GFCCs are a 

species-specific generalization of Mel Frequency Cepstral Coefficients (MFCCs) (Huang et 

al., 2001).  The process for computing cepstral coefficients begins with segmenting 

vocalizations into evenly spaced appropriately sized windows (based on the frequency range 
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and vocalization patterns of the species). For each window, a log magnitude Fast Fourier 

Transform (FFT) is computed and grouped into frequency bins. A Discrete Cosine 

Transform (DCT) is then taken to transform the log magnitude spectrum into cepstral 

values. For GFCC’s, the frequency scale of the FFT is warped according to the Greenwood 

function (Greenwood, 1961) to provide a perceptually scaled axis.  To do this, the 

parameters of the Greenwood function are estimated from the upper and lower bounds of 

the species’ hearing range along with a warping constant of 0.88k   (LePage, 2003).  

Details of the warping equations and GFCC feature extraction process can be found in 

(Clemins and Johnson, 2006; Clemins et al., 2006).  Given basic information about a species 

frequency range, GFCC’s provide an accurate and robust set of features to describe spectral 

characteristics over time. 

In addition to the base set of GFCC features, energy is computed on the original time-

domain data, and velocity and acceleration coefficients representing the first and second 

order rates of change are added. For the experiments described here, the vocalizations are 

segmented using 5ms Hamming windows, with a 2.5ms overlap. 12 GFCCs plus normalized 

log energy along with velocity and acceleration coefficients are calculated, for a total of 39 

features. Frequency warping is done using a given hearing range from 400 Hz to 7200 Hz, 

with 26 triangular frequency bins spaced across that range. Velocity and acceleration 

coefficients are computed using a 5-window linear regression. 

In this work, each of the 19 ortolan bunting syllables is modeled with a 15-state left-to-

right HMM with a diagonal covariance Gaussian model, which is analogous to single 

Gaussian monphone models in human speech.  A song-type grammar model is used simply 

to treat each song-type as an isolated unit, which is similar to the grammar used in the 
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isolated word recognition task in human speech (Rabiner and Levinson, 1981).  During the 

training process, the Baum-Welch algorithm for Expectation Maximization (EM) (Baum et 

al., 1970; Moon, 1996) is used to estimate the HMM parameters that maximize the joint 

likelihood of all training observation sequences. For classification, the Viterbi algorithm 

(Forney, 1973) is used to find the model sequence having the highest likelihood match to the 

sequence of test features. 

4.3.4 Song-type Classification 

Song-type classification experiments were implemented on the ortolan bunting data set 

as previously described. The goal of these experiments is to compare how well the proposed 

eigen-clustering method performs compared to a baseline caller-independent (CI) system, 

and other available adaptation techniques.  For reference, a fully caller-dependent (CD) 

system was also implemented. 

The following song-type classification systems were implemented for comparison: 

CI: The baseline caller-independent models. The system diagram for the CI system is 

shown in Figure 4.21. There was no overlap between the training individuals and test 

individuals, with 75 and 30 individuals in the two datasets, respectively. 

CD: The caller-dependent models. The system diagram for the CD system is shown in 

Figure 4.22.  The training and testing data were separate but came from the same individuals. 

The training data used for the CD experiments was the same as the adaptation data used for 

the CA experiments. 

CA: The caller-adapted models. The adaptation system is shown in Figure 4.23. The 

training and testing data were separate but came from the same individuals, and the test data 
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was further split into adaptation data and final test data. The CA experiments were 

implemented using supervised mean and variance adaptation. 

 

Figure 4.21  Caller-independent (CI) system, with separate individuals for the 
training and testing data 

 

Figure 4.22  Caller-dependent (CD) system, with training and testing data 
coming from the same group of individuals 
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Figure 4.23  Caller-adapted (CA) system, with separate training and testing data, 
but with a portion of the testing data pulled out and used for adaptation. 

Similar to the human speech setup in Section 4.2.3, the 75 callers in the call-independent 

training set were treated as the reference callers for the eigenvoice adaptation, while each of 

2039 vocalizations was used to train a vocalization-level model for the eigen-clustering 

method. 

In order to see how the amount of adaptation data affected the results, each adaptation 

method was implemented multiple times, using increasing amounts of adaptation data. This 

was done in 10% increments (about 3 seconds), starting with 0% (no adaptation, equivalent 

to the initial CI system), then 10%, 20%, and so on up to 100% (full adaptation set in use). 

The classification accuracies for eigenvoice adaptation using PCA derived from both 

correlation and covariance matrices as a function of adaptation data size and eigenspace 

dimensions (number of eigenvoices) are compared in Figure 4.24.  The number of 

eigenvoices includes 1 to 15, 20 – 70 in increments of 10, as well as all 75 reference callers.  

The detailed classification results are also displayed in Table A.16 and Table A.17 

respectively.  The accuracy range is from 77.8% to 89.7% for the PCA correlation 
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implementation, and from 81.4% to 93.3% for the covariance implementation.  The 

covariance implementation shows clearly higher accuracies over the correlation approach at 

almost every point.  The accuracy surfaces of the both implementations are relatively flat 

with increasing the number of adaptation utterances, plateauing after 6 – 9 seconds. 
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Figure 4.24  Eigenvoice performance comparison on PCA correlation matrix vs. 
covariance matrix 
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The proposed eigen-clustering adaptation evaluation results are shown in Figure 4.25.  

The number and the scale of eigen-clusters are the same as in the experiments for the 

eigenvoice adaptation for comparison purposes.  The largest number of eigen-clusters in the 

experiment is 75 to equal the total number of reference callers.  The number of selected 

clusters would be unlikely to be so high in practice, because one of properties of PCA is to 

reduce data dimensions.  The PCA correlation approach in Table A.18 gives the recognition 

accuracies in a range of 84% to 87.9%, while the covariance one in Table A.19 shows the 

results from 82.9% to 87.7%.  The covariance implementation has better performance than 

the correlation one in general as before. 
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Figure 4.25  Eigen-clustering performance comparison on PCA correlation matrix 
vs. covariance matrix 
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The classification results of eigen-clustering and eigenvoice adaptations are shown in 

Figure 4.26.  The both methods are implemented by PCA on the covariance matrix with the 

numbers of clusters/voices selected as 5, 10, 15, 20 and 30.  Under the same amount of 

adaptation data, the overall performance of eigenvoice adaptation (blue lines in Figure 4.26) 

is better than the eigen-clustering (green lines in Figure 4.27) method by about 2%. 

 

Figure 4.26  Performance of Eigenvoic and Eigen-clustering adaptation 

A comparison of eigen-clustering with 30 clusters (EC30) and eigenvoices with 30 voices 

(EV30) to the other three adaptation methods MLLR, MAP and MAPLR is shown in Figure 

4.27.  The baseline CI system has an 82.9% accuracy, while the CD system has an 88.1% 

accuracy.  The both eigenvoice and eigen-clustering methods outperform the baseline CI 
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system.  The eigenvoice adaptation shows the highest accuracy using only 3 seconds of 

adaptation data.  When the eigen-clustering with 30 clusters is combined with MAP (EC30 + 

MAP), the performance is not only better than the other three in the range of 1 – 9 seconds 

but also shows the potential in consistently improving when the amount of adaptation data 

increases.  All the six adaptation methods improve the accuracy over the baseline with more 

than 6 seconds of adaptation data.  The EC30+MAP, eigenvoice, MAP and MAPLR 

methods have already outperformed the CD system at 6 seconds of utterances.  This clearly 

demonstrates that the training data for the CD system (30 utterances per caller) is 

insufficient.  The MAP adaptation shows consistent improvement with incrementing 

adaptation data size.  MAP performs comparably to eigenvoice and slightly better than 

eigen-clustering at the 3-second of adaptation data, because most syllables for each new 

caller have been covered in such a small amount data.  Both MLLR and MAPLR are below 

the baseline when only the 3 seconds of adaptation data are used, because computational 

errors happened during estimating the transformation matrix W  in equation (2.22) at each 

regression class using such a tiny amount of adaptation data (Leggetter and Woodland, 

1995); and because MAPLR is MAP taking the MLLR trained model as a prior.  This poor 

performance of both MLLR and MAPLR at 3-second adaptation data shown here is 

consistent with the previous reported results (Leggetter and Woodland, 1995; Kuhn et al., 

2000).  The MAPLR adaptation yields the highest accuracy with the full set of adaptation 

data, 94.3% overall, representing a net gain of 11.4 percentage points (66% reduction in 

error) over CI and 6.2 percentage points (52% reduction in error) over CD.  This also 

illustrates that adapted system can effectively use the CI system to adapt towards the CD 

system.  Table A.20 contains the detailed classification accuracies in Figure 4.26 and Figure 
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4.27. 

 

Figure 4.27  Performance of six adaptation methods 



80 

 

C H A P T E R  5  CONCLUSIONS 

A new fast (e.g. a few seconds of adaptation data only) speaker adaptation method, 

eigen-clustering, is presented using a dimensionality reduction technique to map the 

parameters of utterance-based models into a set of orthogonal basis vectors.  The new 

method was evaluated on the medium-vocabulary DARPA Resource Management database 

and an ortolan bunting vocalization database.  Principal component analysis (PCA) was 

employed as the dimensional reduction technique to find the eigen clusters, and expectation 

maximization (EM) algorithm was applied as a maximum likelihood (ML) estimator to 

compute the coordinates of each new adapted speaker in the eigen space.  The eigen-

clustering approach showed superior performance on small amounts (up to 30 seconds) of 

supervised adaptation data comparing to the performance of the speaker-

independent/caller-independent state-of-the-art baseline systems as illustrated in Figure 4.8, 

Figure 4.13, Figure 4.18, and Figure 4.27.  With less than 6 seconds of adaptation data in 

these figures, it outperformed the MAP, MLLR, and MAPLR adaptation techniques across-

the-board.  It also achieved accuracies about 2% lower than that of eigenvoice, a method 

which is based on similar concepts but requires explicit knowledge of speaker identities 

during training.  Similar to the eigenvoice method, as the amount of adaptation data 

increased, the performance of eigen-clustering adaptation seemed to reach a plateau. 

The eigen-clustering approach is focused on very rapid adaptation in terms of a few 

seconds of adaptation data without explicit speaker knowledge in speaker-independent 

training data, similar conditions to the speaker-independent training, MAP, MLLR, and 

MAPLR adaptations.  This method would be very useful for human speech recognition tasks 

such as closed-captioning for TV programs and broadcast news, where there is lots of 
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switching between different speakers without knowing who they are. 

For rapid speaker adaptation with a very small amount of adaptation data, the eigen-

clustering method has similarities to its counterpart, the eigenvoice method.  Both methods 

use PCA offline to map the supervectors from the original model (feature) space to the 

eigenspace.  However, the meanings of the supervectors are quite different between the two 

methods.  A supervector represents one speaker-independent utterance in the eigen-

clustering method, whereas it represents a reference speaker (i.e., all utterances associated 

with that speaker) in the speaker-independent training set in the eigenvoice approach.  A 

minor difference to the original eigenvoice paper (Kuhn et al., 2000) is that PCA derived 

from the covariance matrix gave overall better performance than the correlation matrix 

approach, which agreed with the results shown in the similar work (Hu et al., 1998; 

Westwood, 1999).  The reason to use the correlation matrix in the eigenvoice paper (Kuhn et 

al., 2000) was to prevent variables (i.e., reference speakers) with large absolute values from 

dominating the analysis in cases where the variables have different units of measurement or 

are of different types.  This reason did not influence either the eigen-clustering or eigenvoice 

method in terms of the experimental results in Figure 4.5, Figure 4.6, Figure 4.10, Figure 

4.11, Figure 4.15, Figure 4.16, Figure 4.24 and Figure 4.25.  The detailed comparison 

between the properties of eigen-clustering and eigenvoice adaptation is shown in Table 5.1. 
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 Eigen-clustering Eigenvoice 

SD Models/data required? No Yes 

Speaker identities required? No Yes 

Interpretation of supervector Utterance Speaker 

Recommended PCA approach Covariance matrix Correlation Matrix 

Offline PCA computation Yes Yes 

Weight vector estimation EM EM 

Adaptation data needed (> SI/CI) 3 sec 3 sec 

Saturation starting ≥ 6 sec ≥ 6 sec 

Table 5.1  Comparison between the properties of eigen-clustering and eigenvoice 
methods 

The performance of eigen-clustering is generally about 2% lower than the eigenvoice 

adaptation when they are in the same number of K-dimension and the same size of 

adaptation data.  This suggests that the K-dimensional eigenspace mapped from the “real” 

reference speaker models presents more accurate speech characteristics than the one created 

by the “artificial” utterance models. 

The eigen-clustering method can be extended by combining it with the other adaptation 

methods such as MAP with the eigen-clustering adapted model as a prior.  The green lines 

in Figure 4.8, Figure 4.13, Figure 4.18, and Figure 4.27 clearly indicate the advantages and 

disadvantages of the eigen-clustering approach.  The most obvious advantage is an extremely 

fast adaptability for a very small amount of adaptation data (6 seconds or fewer), but a 

disadvantage is that the performance quickly reaches a plateau for larger amounts (about 6 – 

9 seconds).  According to (Kuhn et al., 2000), the reason for the performance saturation at 

larger amounts is that the K-dimensional eigenspace is a constraint in representing a new 

speaker, meaning some acoustic representations for the new speaker are not seen in the K 
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reference speakers. In other words, the speech characteristics in the K-dimensional space do 

not fully cover the new speakers.  For example, SD models trained from all American 

English speakers do not cover a new speaker with a British English accent.  The eigen-

clustering and MAP combination retains the advantages of the approach for a very small 

amount of adaptation data, while improving performance for larger amounts (see the red line 

in each of these figures).  This combination allows the adapted speaker model to leave the K-

dimensional space, approaching the “true” new speaker model as the data becomes available. 

The eigen-clustering and MAP combined method processes the two different 

adaptations consecutively, where eigen-clustering is used to adapt the model parameters and 

then MAP uses the adapted model as a priori.  This concatenated style makes the final 

performance purely rely on the adapted model obtained in the first step, so that the accuracy 

improvement is much less obvious when 15 seconds or more of adaptation data is used.  

Given this issue, future work will focus on new adaptation methods to combine both rapid 

and normal adaptation scales by generalizing the estimation of eigen-cluster/voice weights. 

Speaker adaptation is a technique to effectively reduce the speaker variability in speech 

recognition.  In a larger view, the concept of adaptation can handle a variety of variation 

issues.  Future work will apply adaptation methods to minimize the intra-speaker variability 

such as phoneme variations for speaker identification/verification tasks, and to normalize 

the mismatch across different environment conditions for some tasks where the collected 

data might be in different background noises, and (or) from different recording equipments. 

Overall, the most important contribution of this work is that the eigen-clustering 

adaptation realizes extremely rapid speaker adaptation without the need for speaker-

dependent models.  This contribution has the potential to impact applications in human 
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speech technology such as speech recognition and speaker identification, as well as more 

customized speech technology applications such as automatic vocalization transcription for 

bioacoustic data. 
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APPENDIX A    EXPERIMENTAL RESULTS 

A.1. Human Speech 

A.1.1 Single Gaussian Monophone Models 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 78.0 77.8 77.7 77.7 77.8 77.8 77.8 77.8 77.7 77.7

2 78.0 77.9 77.9 77.9 77.9 77.8 77.8 77.8 77.8 77.8

3 77.9 77.9 77.9 78.0 77.9 77.9 77.9 77.9 77.9 77.9

4 78.0 77.9 78.1 78.1 78.0 78.0 78.0 77.9 77.9 77.9

5 78.0 78.1 78.1 78.1 78.1 78.0 78.1 78.0 77.9 77.9

6 78.0 78.0 78.1 78.2 78.1 78.0 78.0 78.1 78.0 77.9

7 78.0 78.1 78.1 78.1 78.0 77.9 78.0 78.0 77.9 77.9

8 78.3 78.1 78.1 78.1 78.3 78.2 78.1 78.1 78.0 78.0

9 78.1 78.0 78.1 78.1 78.1 78.1 78.1 78.1 78.0 78.2

10 78.2 78.1 78.1 78.2 78.2 78.3 78.1 78.1 78.1 78.1

11 78.1 78.0 78.0 78.2 78.2 78.2 78.0 77.9 77.9 77.9

12 78.1 77.9 78.1 78.3 78.3 78.3 78.2 78.2 78.3 78.2

13 78.1 78.0 78.1 78.3 78.5 78.6 78.3 78.2 78.3 78.2

14 78.4 78.4 78.7 78.7 78.6 78.6 78.5 78.5 78.5 78.5

15 78.6 78.7 79.0 78.8 78.7 78.7 78.6 78.6 78.7 78.7

20 78.5 78.7 78.9 78.9 78.8 78.9 78.8 78.8 78.8 78.8

30 78.6 78.6 78.6 78.8 78.8 78.7 78.7 78.7 78.7 78.7

40 78.2 78.5 78.8 78.7 78.7 78.8 78.9 78.9 78.8 78.6

50 78.2 78.4 78.6 78.7 78.6 78.6 78.8 78.6 78.6 78.6

60 78.0 78.4 78.7 78.5 78.9 79.0 78.9 78.8 78.6 78.6

70 77.5 78.6 78.9 78.7 78.9 79.0 79.2 78.9 78.8 78.9

80 77.0 78.7 78.9 78.9 79.0 79.1 79.2 79.2 79.2 79.1

90 76.5 78.4 78.8 79.0 79.0 79.1 79.1 79.2 79.0 78.9

100 76.4 78.1 78.6 78.8 78.8 78.9 79.0 78.9 78.9 78.8

109 76.3 78.5 78.9 78.8 79.0 79.2 79.2 79.0 78.8 78.8

Table A.1  Word accuracies of Eigenvoice adapted single Gaussian monophone 
system using PCA correlation implementation 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 79.0 79.1 79.0 79.1 79.1 79.2 79.2 79.2 79.1 79.1

2 79.2 79.3 79.3 79.2 79.2 79.3 79.3 79.3 79.2 79.2

3 79.4 79.5 79.4 79.5 79.5 79.5 79.5 79.5 79.5 79.4

4 79.6 79.7 79.5 79.7 79.8 79.7 79.6 79.6 79.5 79.5

5 79.7 79.6 79.5 79.7 79.7 79.7 79.8 79.6 79.6 79.6

6 80.3 80.3 80.1 80.1 80.1 80.1 80.3 80.2 80.2 80.2

7 80.5 80.3 80.3 80.2 80.4 80.3 80.3 80.1 80.2 80.2

8 80.3 80.1 80.1 80.3 80.2 80.3 80.3 80.3 80.3 80.1

9 80.6 80.5 80.3 80.4 80.3 80.3 80.4 80.4 80.4 80.5

10 80.6 80.6 80.8 80.6 80.6 80.7 80.7 80.7 80.7 80.8

11 80.7 80.6 80.8 80.7 80.7 80.7 80.7 80.7 80.8 80.8

12 80.4 80.5 80.7 80.6 80.5 80.6 80.6 80.5 80.6 80.5

13 80.7 80.6 80.8 80.7 80.7 80.7 80.9 80.7 80.8 80.8

14 80.5 80.8 80.8 80.8 80.8 80.6 80.8 80.9 80.9 81.0

15 80.3 80.4 80.5 80.6 80.5 80.7 80.5 80.8 80.9 80.9

20 80.5 80.3 80.4 80.6 80.7 80.8 80.8 80.8 80.9 80.9

30 81.0 81.4 81.1 81.3 81.5 81.4 81.4 81.4 81.4 81.4

40 81.0 81.4 81.2 81.3 81.4 81.5 81.6 81.4 81.4 81.2

50 80.6 81.5 81.0 81.3 81.6 81.6 81.6 81.7 81.6 81.6

60 80.3 81.3 81.1 81.1 81.4 81.4 81.4 81.7 81.6 81.6

70 80.1 81.1 81.0 81.1 81.3 81.3 81.4 81.5 81.6 81.6

80 79.8 81.2 81.0 81.0 81.2 81.2 81.8 81.8 81.7 81.8

90 79.9 81.3 81.1 80.9 81.3 81.4 81.5 81.6 81.7 81.7

100 79.8 81.4 81.4 81.3 81.4 81.4 81.8 81.8 81.7 81.9

109 79.7 81.3 81.4 81.4 81.4 81.5 82.0 82.0 81.8 82.0

Table A.2  Word accuracies of Eigenvoice adapted single Gaussian monophone 
system using PCA covariance implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 77.3 77.1 77.1 77.1 77.2 77.2 77.1 77.1 77.1 77.1

2 77.2 77.2 77.1 77.2 77.1 77.3 77.2 77.3 77.2 77.2

3 77.2 77.3 77.4 77.3 77.4 77.4 77.3 77.4 77.4 77.5

4 77.3 77.4 77.4 77.4 77.5 77.5 77.5 77.5 77.5 77.6

5 77.5 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.7 77.7

6 77.7 77.5 77.7 77.7 77.6 77.6 77.7 77.7 77.8 77.7

7 77.7 77.6 77.6 77.7 77.7 77.7 77.7 77.6 77.6 77.7

8 77.8 77.6 77.6 77.6 77.6 77.6 77.7 77.6 77.6 77.7

9 77.9 77.5 77.7 77.6 77.6 77.6 77.6 77.6 77.6 77.7

10 77.7 77.6 77.6 77.8 77.8 77.7 77.7 77.6 77.6 77.7

11 77.8 77.7 78.0 78.0 77.9 77.8 77.9 77.8 77.8 77.9

12 78.0 78.0 78.0 78.0 77.9 78.0 78.1 78.0 78.0 78.0

13 78.0 78.0 78.0 77.9 77.9 78.0 78.1 78.0 78.1 78.1

14 77.8 77.9 78.0 77.8 77.9 78.0 78.0 77.9 77.9 77.9

15 77.8 77.8 77.8 78.0 78.0 78.0 77.9 77.8 77.9 77.9

20 77.5 77.8 77.8 77.8 77.8 77.8 77.9 77.8 77.8 77.9

30 77.7 77.9 78.0 78.2 78.2 78.2 78.1 78.1 77.9 78.0

40 77.6 77.9 78.1 78.2 78.3 78.1 78.2 78.1 78.1 78.1

50 77.2 77.7 78.1 78.2 78.4 78.3 78.2 78.2 78.2 78.1

60 76.6 77.9 78.3 78.7 78.9 78.8 78.9 79.0 78.7 78.7

70 76.2 78.0 78.4 78.3 78.5 78.6 78.7 78.7 78.9 78.8

80 75.6 77.7 78.5 78.7 79.0 79.1 79.1 79.2 79.1 79.2

90 75.0 77.9 78.4 78.9 78.9 78.9 79.0 78.9 78.9 79.0

100 73.7 77.4 78.1 78.8 79.0 78.9 79.1 79.2 79.3 79.3

109 72.3 76.9 77.8 78.4 78.7 78.8 78.9 79.0 79.2 79.2

Table A.3  Word accuracies of Eigen-clustering adapted single Gaussian 
monophone system using PCA correlation implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 77.9 78.4 78.4 78.3 78.5 78.3 78.3 78.3 78.2 78.3

2 78.1 78.4 78.4 78.4 78.4 78.5 78.4 78.3 78.4 78.4

3 78.8 78.9 78.9 78.9 78.9 78.9 79.0 79.0 78.9 78.8

4 78.7 79.0 79.1 79.3 79.3 79.2 79.2 79.2 79.2 79.2

5 78.7 78.9 79.0 79.1 79.1 79.2 79.1 79.2 79.3 79.1

6 78.7 78.8 78.7 78.9 78.9 78.9 78.9 79.0 78.9 78.9

7 78.8 78.9 79.0 79.3 79.3 79.2 79.3 79.2 79.4 79.4

8 79.0 79.1 79.0 79.4 79.4 79.2 79.1 79.2 79.1 79.2

9 79.0 79.4 79.2 79.4 79.5 79.6 79.5 79.7 79.7 79.5

10 79.2 79.5 79.6 79.6 79.5 79.7 79.7 79.7 79.7 79.7

11 79.2 79.5 79.5 79.6 79.6 79.5 79.5 79.7 79.8 79.7

12 79.2 79.8 79.3 79.5 79.6 79.4 79.6 79.7 79.6 79.5

13 79.0 79.6 79.3 79.5 79.5 79.4 79.4 79.6 79.7 79.5

14 79.0 79.5 79.5 79.6 79.4 79.4 79.3 79.4 79.6 79.5

15 79.2 79.6 79.5 79.7 79.4 79.3 79.5 79.4 79.5 79.6

20 78.7 79.2 79.3 79.5 79.4 79.4 79.4 79.4 79.3 79.4

30 77.8 78.7 78.9 79.4 79.5 79.4 79.6 79.7 79.9 79.8

40 76.9 78.7 79.3 79.8 79.6 79.8 80.0 80.1 80.1 80.1

50 76.3 78.6 79.0 79.8 80.0 80.0 80.2 80.3 80.4 80.2

60 75.6 78.3 79.0 79.8 80.0 80.1 80.1 80.4 80.4 80.4

70 74.5 78.4 79.2 80.0 79.9 80.2 80.4 80.7 80.7 80.6

80 73.2 78.1 79.3 79.8 80.3 80.5 80.6 80.5 80.9 80.9

90 72.0 77.8 79.0 79.8 80.0 80.4 80.5 80.5 80.7 80.7

100 71.4 77.7 79.0 80.0 80.2 80.6 80.7 80.9 80.8 80.8

109 70.3 77.1 78.7 79.4 79.4 80.3 80.7 80.6 80.6 80.9

Table A.4  Word accuracies of Eigen-clustering adapted single Gaussian 
monophone system using PCA covariance implementation 
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System vs. 

Adaptation data size 
1 2 3 4 5 6 7 8 9 10 

MLLR 77.3 77.5 78.4 79.3 80.6 80.7 81.4 81.9 82.1 82.3

MAP 76.5 69.9 72.5 72.6 75.0 78.5 79.4 80.8 82.2 82.2

MAPLR 79.7 79.6 79.5 79.7 79.7 79.7 79.8 79.6 79.6 79.6

EV5 80.6 80.6 80.8 80.6 80.6 80.7 80.7 80.7 80.7 80.8

EV10 80.3 80.4 80.5 80.6 80.5 80.7 80.5 80.8 80.9 80.9

EV15 80.5 80.3 80.4 80.6 80.7 80.8 80.8 80.8 80.9 80.9

EV20 81.0 81.4 81.1 81.3 81.5 81.4 81.4 81.4 81.4 81.4

EV30 78.7 78.9 79.0 79.1 79.1 79.2 79.1 79.2 79.3 79.1

EC5 79.2 79.5 79.6 79.6 79.5 79.7 79.7 79.7 79.7 79.7

EC10 79.2 79.6 79.5 79.7 79.4 79.3 79.5 79.4 79.5 79.6

EC15 78.7 79.2 79.3 79.5 79.4 79.4 79.4 79.4 79.3 79.4

EC20 77.8 78.7 78.9 79.4 79.5 79.4 79.6 79.7 79.9 79.8

EC30 78.8 80.4 80.6 80.9 81.6 81.7 81.8 82.1 82.2 82.2

EC30+MAP 77.3 77.5 78.4 79.3 80.6 80.7 81.4 81.9 82.1 82.3

Table A.5  Word accuracies of the six adaptation methods on single Gaussian 
monophone system 

A.1.2 Four-Mixture Gaussian Monophone Models 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 86.6 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7

2 86.7 86.9 86.8 86.8 86.8 86.8 86.8 86.8 86.9 86.8

3 86.7 86.9 86.8 86.8 86.8 86.8 86.7 86.8 86.7 86.8

4 86.8 86.8 86.9 86.9 86.9 86.9 86.9 86.8 86.8 86.8

5 86.9 86.8 86.8 86.8 86.8 86.8 86.8 86.8 86.8 86.8

6 86.9 87.0 87.0 86.9 87.0 87.0 87.0 87.0 86.9 86.9

7 86.9 87.1 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0

8 86.9 87.0 87.0 86.9 86.9 86.9 87.0 86.9 87.0 86.9

9 86.8 87.1 87.0 87.0 87.0 87.0 87.0 87.1 87.0 87.0

10 87.0 87.0 87.0 87.0 86.9 86.9 87.0 87.0 87.0 87.0

11 87.0 86.9 87.0 87.0 86.9 86.9 87.0 87.0 87.0 87.0

12 87.0 87.1 87.1 87.0 86.9 86.9 87.0 87.0 87.0 87.0

13 87.2 87.2 87.3 87.2 87.1 87.1 87.1 87.1 87.1 87.1

14 87.1 87.3 87.3 87.3 87.1 87.2 87.2 87.2 87.2 87.2

15 87.3 87.4 87.3 87.2 87.2 87.3 87.2 87.2 87.2 87.2

20 87.3 87.4 87.4 87.4 87.3 87.3 87.3 87.3 87.3 87.2

30 87.3 87.2 87.2 87.2 87.1 87.2 87.2 87.2 87.1 87.1

40 87.1 87.3 87.3 87.2 87.2 87.2 87.3 87.2 87.2 87.2

50 87.2 87.3 87.6 87.4 87.4 87.3 87.3 87.3 87.3 87.4

60 87.2 87.2 87.5 87.4 87.4 87.2 87.3 87.4 87.3 87.3

70 87.1 87.3 87.5 87.5 87.4 87.4 87.5 87.4 87.4 87.4

80 87.0 87.3 87.4 87.5 87.4 87.5 87.4 87.4 87.5 87.5

90 86.9 87.3 87.3 87.4 87.4 87.4 87.5 87.5 87.5 87.5

100 86.8 87.3 87.5 87.5 87.5 87.4 87.5 87.5 87.5 87.6

109 86.7 87.3 87.5 87.4 87.5 87.6 87.6 87.5 87.5 87.5

Table A.6  Word accuracies of Eigenvoice adapted four-mixture Gaussian 
monophone system using PCA correlation implementation 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 87.6 87.5 87.6 87.7 87.7 87.7 87.7 87.7 87.7 87.7

2 87.6 87.6 87.6 87.7 87.7 87.7 87.6 87.6 87.7 87.7

3 87.6 87.7 87.7 87.7 87.7 87.7 87.7 87.7 87.7 87.7

4 87.7 87.7 87.6 87.7 87.7 87.7 87.6 87.7 87.7 87.7

5 87.7 87.9 87.8 87.8 87.9 87.9 87.8 87.8 87.9 87.9

6 88.1 88.2 88.4 88.2 88.3 88.3 88.2 88.3 88.3 88.3

7 88.0 88.3 88.3 88.2 88.2 88.2 88.2 88.2 88.2 88.2

8 88.0 88.3 88.5 88.3 88.3 88.3 88.4 88.4 88.4 88.4

9 88.1 88.2 88.4 88.4 88.3 88.4 88.3 88.3 88.3 88.3

10 88.2 88.3 88.2 88.3 88.4 88.4 88.4 88.3 88.4 88.3

11 88.3 88.2 88.3 88.3 88.3 88.3 88.3 88.5 88.4 88.4

12 88.3 88.3 88.3 88.2 88.2 88.2 88.2 88.3 88.2 88.2

13 88.2 88.3 88.3 88.2 88.2 88.3 88.3 88.4 88.3 88.3

14 88.2 88.3 88.4 88.3 88.3 88.4 88.5 88.4 88.4 88.4

15 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4

20 88.4 88.5 88.7 88.7 88.7 88.7 88.7 88.6 88.6 88.7

30 88.4 88.8 89.0 88.9 89.1 88.9 88.8 88.9 88.8 88.8

40 88.3 88.7 88.9 88.7 88.9 88.9 88.8 88.8 88.9 88.8

50 88.3 88.8 89.1 88.8 89.0 89.0 89.0 89.0 89.1 89.2

60 88.3 88.9 89.1 89.0 89.2 89.2 89.2 89.1 89.1 89.1

70 88.6 89.0 89.3 89.2 89.3 89.2 89.2 89.2 89.1 89.1

80 88.5 89.0 89.1 89.1 89.3 89.1 89.1 89.1 89.0 89.1

90 88.2 88.8 89.1 89.1 89.2 89.1 89.1 88.9 89.0 89.1

100 88.2 88.8 89.2 89.1 89.2 89.1 89.2 89.1 89.1 89.2

109 88.6 88.8 89.1 89.1 89.1 89.2 89.3 89.2 89.3 89.2

Table A.7  Word accuracies of Eigenvoice adapted four-mixture Gaussian 
monophone system using PCA covariance implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 86.7 86.6 86.6 86.6 86.6 86.6 86.6 86.7 86.6 86.7

2 86.6 86.6 86.6 86.6 86.6 86.7 86.6 86.7 86.7 86.6

3 86.7 86.6 86.7 86.7 86.7 86.7 86.7 86.7 86.6 86.6

4 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7

5 86.6 86.6 86.7 86.6 86.6 86.7 86.7 86.7 86.7 86.7

6 86.6 86.5 86.7 86.7 86.6 86.7 86.7 86.6 86.6 86.6

7 86.5 86.6 86.7 86.6 86.6 86.7 86.7 86.6 86.6 86.6

8 86.5 86.6 86.6 86.7 86.6 86.6 86.7 86.7 86.7 86.7

9 86.4 86.6 86.7 86.7 86.7 86.7 86.7 86.7 86.7 86.7

10 86.4 86.5 86.6 86.6 86.6 86.6 86.6 86.7 86.6 86.6

11 86.5 86.5 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6

12 86.5 86.5 86.5 86.6 86.6 86.6 86.6 86.6 86.6 86.6

13 86.4 86.5 86.5 86.5 86.5 86.5 86.6 86.5 86.5 86.6

14 86.3 86.5 86.4 86.5 86.5 86.5 86.6 86.5 86.6 86.6

15 86.3 86.6 86.6 86.6 86.5 86.5 86.6 86.5 86.6 86.6

20 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

30 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

40 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

50 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

60 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

70 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

80 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

90 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

100 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

109 86.4 86.5 86.6 86.5 86.6 86.6 86.6 86.6 86.6 86.6

Table A.8  Word accuracies of Eigen-clustering adapted four-mixture Gaussian 
monophone system using PCA correlation implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 86.5 86.8 86.7 86.7 86.8 86.7 86.8 86.8 86.7 86.7

2 86.5 86.6 86.7 86.7 86.8 86.8 86.8 86.8 86.9 86.9

3 86.8 87.1 87.0 87.1 87.1 87.0 87.1 87.1 87.0 87.0

4 86.8 86.9 86.8 86.8 86.9 86.8 86.8 86.9 86.8 86.9

5 86.7 86.6 86.6 86.7 86.8 86.8 86.8 86.8 87.0 87.0

6 86.7 86.8 86.9 86.7 86.8 86.9 86.9 87.0 87.0 87.0

7 86.6 86.6 86.7 86.7 86.7 86.7 86.8 86.8 86.8 86.8

8 86.6 86.6 86.8 86.7 86.8 86.8 86.8 86.8 86.9 86.9

9 86.5 86.5 86.8 86.7 86.9 86.8 86.8 86.8 86.9 86.9

10 86.6 86.6 86.8 86.8 86.8 86.8 86.8 86.8 86.9 86.9

11 86.6 86.6 86.9 86.9 86.9 86.8 86.9 86.8 87.0 87.0

12 86.7 86.7 87.0 87.1 87.1 87.0 87.1 87.1 87.1 87.2

13 86.7 86.9 87.1 87.0 87.1 87.1 87.2 87.1 87.1 87.2

14 86.8 86.9 87.0 87.0 87.1 87.1 87.2 87.2 87.2 87.2

15 86.9 86.9 87.0 87.1 87.1 87.1 87.2 87.2 87.2 87.2

20 87.1 87.2 87.2 87.2 87.3 87.3 87.3 87.4 87.3 87.2

30 87.2 87.5 87.4 87.4 87.5 87.5 87.5 87.5 87.5 87.4

40 87.2 87.6 87.8 87.7 87.8 87.6 87.7 87.6 87.7 87.6

50 87.2 87.5 87.6 87.6 87.8 87.8 87.8 87.8 87.7 87.7

60 87.0 87.6 87.6 87.8 87.8 87.7 87.8 87.7 87.7 87.7

70 86.9 87.5 87.3 87.4 87.6 87.6 87.7 87.8 87.8 87.8

80 86.8 87.4 87.6 87.4 87.8 87.8 88.0 87.9 88.0 87.9

90 86.3 87.2 87.5 87.7 87.7 87.7 87.9 87.8 88.0 88.0

100 86.2 87.0 87.1 87.3 87.6 87.7 87.9 87.9 88.0 88.0

109 86.1 87.0 87.2 87.3 87.7 87.9 87.9 87.9 88.0 88.1

Table A.9  Word accuracies of Eigen-clustering adapted four-mixture Gaussian 
monophone system using PCA covariance implementation 
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System vs. 

Adaptation data size 
1 2 3 4 5 6 7 8 9 10 

MLLR 86.6 87.1 88.0 88.2 87.7 88.7 89.0 89.2 89.3 89.3

MAP 86.6 87.4 87.9 88.3 88.7 88.9 89.3 89.3 89.5 89.6

MAPLR 87.0 85.8 88.0 88.3 88.6 88.8 89.2 89.4 89.7 89.6

EV5 87.7 87.9 87.8 87.8 87.9 87.9 87.8 87.8 87.9 87.9

EV10 88.2 88.3 88.2 88.3 88.4 88.4 88.4 88.3 88.4 88.3

EV15 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4 88.4

EV20 88.4 88.5 88.7 88.7 88.7 88.7 88.7 88.6 88.6 88.7

EV30 88.4 88.8 89.0 88.9 89.1 88.9 88.8 88.9 88.8 88.8

EC5 86.7 86.6 86.6 86.7 86.8 86.8 86.8 86.8 87.0 87.0

EC10 86.6 86.6 86.8 86.8 86.8 86.8 86.8 86.8 86.9 86.9

EC15 86.9 86.9 87.0 87.1 87.1 87.1 87.2 87.2 87.2 87.2

EC20 87.1 87.2 87.2 87.2 87.3 87.3 87.3 87.4 87.3 87.2

EC30 87.2 87.5 87.4 87.4 87.5 87.5 87.5 87.5 87.5 87.4

EC30+MAP 87.8 88.4 88.6 88.8 88.8 89.1 89.2 89.3 89.5 89.8

Table A.10  Word accuracies of the six adaptation methods on four-mixture 
Gaussian monophone system 

A.1.3 Single Gaussian Triphone Models 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 89.2 89.0 89.1 89.1 89.0 89.0 89.1 89.0 89.2 89.1

2 89.2 89.1 89.2 89.1 88.9 88.9 89.0 89.1 89.0 88.9

3 89.1 89.2 89.2 89.3 89.1 89.1 89.3 89.3 89.0 89.1

4 89.1 89.2 89.4 89.4 89.3 89.1 89.1 89.0 89.1 89.2

5 89.3 89.4 89.2 89.5 89.5 89.3 89.2 89.3 89.2 89.2

6 89.3 89.2 89.4 89.4 89.3 89.1 89.4 89.3 89.2 89.0

7 89.2 89.6 89.4 89.2 89.3 89.1 89.2 89.3 89.2 89.2

8 89.6 89.4 89.3 89.2 89.5 89.5 89.2 89.4 89.3 89.3

9 89.3 89.4 89.4 89.4 89.5 89.3 89.4 89.2 89.2 89.5

10 89.2 89.4 89.3 89.4 89.5 89.5 89.3 89.2 89.4 89.4

11 89.2 89.1 89.4 89.5 89.4 89.5 89.2 89.1 89.2 89.2

12 89.5 89.3 89.2 89.4 89.4 89.6 89.6 89.4 89.6 89.5

13 89.4 89.1 89.4 89.6 89.8 89.7 89.4 89.6 89.5 89.5

14 89.7 89.7 89.9 89.8 89.8 89.9 89.8 89.8 89.7 89.7

15 90.0 90.0 90.2 90.2 89.8 89.9 89.7 90.1 89.9 90.1

20 89.8 89.9 90.2 90.3 90.0 90.1 90.0 90.2 90.1 90.1

30 89.9 89.8 89.8 90.1 90.1 89.9 90.0 89.8 90.0 89.9

40 89.2 89.7 90.2 89.9 89.9 90.1 90.2 90.0 90.1 89.7

50 89.4 89.8 89.8 89.8 89.9 89.9 89.9 89.9 89.9 89.9

60 89.1 89.8 89.9 89.7 90.1 90.1 90.0 90.0 89.9 89.8

70 88.7 89.9 90.2 90.0 90.1 90.3 90.5 90.1 90.0 90.1

80 88.3 89.9 90.2 90.2 90.3 90.4 90.4 90.4 90.4 90.3

90 87.7 89.7 90.1 90.3 90.3 90.3 90.4 90.4 90.4 90.1

100 87.6 89.5 89.9 90.0 90.1 90.2 90.1 90.3 90.0 90.1

109 87.6 89.7 90.1 90.1 90.1 90.5 90.5 90.2 90.1 90.2

Table A.11  Word accuracies of Eigenvoice adapted single Gaussian triphone 
system using PCA correlation implementation 
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No. of EVs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 90.1 90.4 90.5 90.3 90.1 90.5 90.5 90.4 90.4 90.5

2 90.5 90.5 90.6 90.5 90.6 90.5 90.6 90.4 90.4 90.5

3 90.6 90.8 90.7 90.8 90.8 90.8 90.9 90.7 90.7 90.8

4 90.8 90.9 90.7 90.9 91.1 90.8 90.9 90.8 90.8 90.8

5 91.0 90.8 90.7 91.0 91.0 91.0 91.1 91.0 90.8 90.8

6 91.6 91.6 91.3 91.2 91.3 91.3 91.7 91.6 91.3 91.4

7 91.9 91.6 91.6 91.4 91.6 91.6 91.6 91.3 91.5 91.6

8 91.7 91.3 91.3 91.6 91.5 91.5 91.6 91.5 91.5 91.4

9 91.7 91.8 91.6 91.5 91.5 91.5 91.6 91.7 91.8 91.7

10 91.8 91.8 92.0 91.9 91.8 91.9 92.0 91.9 92.0 91.9

11 91.9 91.9 92.1 92.0 92.0 92.0 92.0 92.1 92.1 92.2

12 91.7 91.7 91.8 91.8 91.9 91.8 91.9 91.8 91.9 91.7

13 92.0 91.9 92.1 91.9 91.9 92.1 92.1 91.9 92.1 92.1

14 91.8 92.1 92.0 92.0 92.1 91.9 92.1 92.1 92.1 92.3

15 91.4 91.6 91.7 91.9 91.7 91.9 91.8 92.0 92.1 92.2

20 91.9 91.4 91.8 92.0 92.0 91.9 92.1 91.9 92.2 92.4

30 92.3 92.7 92.5 92.5 92.6 92.8 92.6 92.6 92.6 92.6

40 92.2 92.8 92.3 92.5 92.8 92.7 92.8 92.7 92.6 92.3

50 91.8 92.9 92.4 92.5 92.9 92.9 92.8 93.0 92.9 92.8

60 91.7 92.4 92.2 92.5 92.6 92.5 92.5 93.0 93.0 92.9

70 91.4 92.3 92.3 92.4 92.5 92.5 92.5 92.7 92.8 92.7

80 91.0 92.4 92.4 92.2 92.6 92.4 92.9 93.2 92.9 93.0

90 91.1 92.4 92.1 92.3 92.6 92.7 92.9 92.8 92.9 93.0

100 91.3 92.7 92.8 92.4 92.6 92.6 93.1 93.0 93.0 93.1

109 90.8 92.7 92.5 92.7 92.7 92.7 93.0 93.0 92.9 93.2

Table A.12  Word accuracies of Eigenvoice adapted single Gaussian triphone 
system using PCA covariance implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 89.2 89.0 89.1 89.0 89.2 89.1 89.2 89.0 89.1 89.1

2 89.1 89.2 89.0 89.0 89.1 89.2 89.1 89.2 89.1 89.2

3 89.1 89.1 89.4 89.2 89.3 89.1 89.1 89.3 89.3 89.3

4 89.2 89.4 89.4 89.4 89.5 89.3 89.5 89.3 89.4 89.6

5 89.4 89.5 89.7 89.6 89.5 89.5 89.5 89.5 89.7 89.6

6 89.5 89.4 89.8 89.6 89.5 89.5 89.8 89.6 89.5 89.5

7 89.6 89.6 89.5 89.5 89.5 89.6 89.6 89.4 89.5 89.7

8 89.7 89.5 89.5 89.6 89.4 89.5 89.6 89.4 89.5 89.5

9 89.9 89.3 89.5 89.5 89.5 89.7 89.6 89.5 89.6 89.5

10 89.5 89.6 89.4 89.6 89.7 89.5 89.5 89.7 89.5 89.6

11 89.7 89.6 89.8 90.0 89.8 89.8 89.8 89.6 89.7 89.7

12 89.8 89.8 90.0 90.0 89.9 89.8 89.9 89.8 89.7 89.9

13 89.9 89.9 89.8 89.8 89.7 90.1 90.0 90.0 90.2 90.0

14 89.8 89.8 89.8 89.5 89.8 90.0 89.8 89.6 89.8 89.8

15 89.6 89.6 89.7 89.8 89.9 89.9 89.8 89.7 89.8 89.9

20 89.3 89.7 89.7 89.8 89.7 89.7 89.8 89.7 89.7 89.8

30 89.6 89.8 89.7 90.2 90.1 90.1 90.1 89.9 89.8 89.8

40 89.5 89.7 89.9 90.0 90.2 90.1 90.1 90.1 90.1 90.0

50 89.2 89.6 90.1 90.2 90.5 90.2 90.1 90.1 90.2 90.0

60 88.6 89.8 90.1 90.5 90.8 90.7 91.0 90.9 90.5 90.6

70 88.2 89.8 90.3 90.3 90.5 90.5 90.7 90.7 91.0 90.8

80 87.3 89.6 90.5 90.6 90.9 91.0 91.0 91.0 91.2 91.1

90 86.9 89.7 90.3 90.8 90.8 90.8 90.9 90.7 90.9 91.0

100 85.6 89.3 89.9 90.9 90.9 90.7 91.0 91.1 91.2 91.2

109 84.1 88.9 89.8 90.2 90.5 90.6 91.0 90.7 90.9 91.3

Table A.13  Word accuracies of Eigen-clustering adapted single Gaussian 
triphone system using PCA correlation implementation 
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No. of ECs vs. 

Adaptation Utterances 
1 2 3 4 5 6 7 8 9 10 

1 89.7 90.3 90.2 90.3 90.5 90.2 90.1 90.2 90.2 90.1

2 90.0 90.4 90.3 90.3 90.3 90.4 90.3 90.2 90.2 90.2

3 90.6 90.8 90.9 90.8 90.8 90.9 90.9 90.9 90.8 90.6

4 90.7 90.8 90.8 91.1 91.2 91.1 91.1 91.3 91.3 91.2

5 90.7 90.8 90.8 90.9 91.1 91.2 91.1 91.2 91.3 90.9

6 90.7 90.6 90.7 90.8 90.8 90.8 90.8 90.8 90.8 90.7

7 90.7 90.8 90.9 91.3 91.3 91.0 91.3 91.0 91.3 91.2

8 90.9 91.0 91.0 91.4 91.2 91.1 90.9 90.9 91.0 91.2

9 91.0 91.4 91.3 91.3 91.3 91.5 91.5 91.6 91.5 91.5

10 91.0 91.3 91.5 91.6 91.4 91.6 91.7 91.7 91.7 91.7

11 91.0 91.4 91.4 91.5 91.6 91.5 91.5 91.6 91.7 91.6

12 91.1 91.7 91.2 91.6 91.5 91.3 91.6 91.7 91.6 91.5

13 90.9 91.6 91.0 91.3 91.5 91.4 91.3 91.6 91.7 91.5

14 90.9 91.2 91.5 91.5 91.4 91.4 91.3 91.5 91.5 91.3

15 91.2 91.5 91.4 91.5 91.3 91.3 91.5 91.3 91.3 91.5

20 90.7 91.3 91.2 91.4 91.3 91.5 91.3 91.2 91.2 91.2

30 89.7 90.6 90.7 91.3 91.3 91.3 91.6 91.5 91.8 91.7

40 88.9 90.6 91.3 91.6 91.4 91.8 91.9 92.0 92.0 92.0

50 88.3 90.5 91.0 91.8 92.0 92.0 92.1 92.3 92.3 92.2

60 87.6 90.3 90.9 91.7 92.0 92.1 92.2 92.3 92.2 92.5

70 86.4 90.3 91.0 91.8 91.8 92.1 92.4 92.7 92.7 92.6

80 85.1 90.1 91.1 91.6 92.1 92.4 92.6 92.4 92.8 92.8

90 84.0 89.7 91.0 91.9 91.8 92.3 92.5 92.3 92.6 92.7

100 83.3 89.6 91.1 91.9 92.0 92.4 92.6 92.8 92.8 92.6

109 82.2 88.8 90.6 91.3 91.5 92.3 92.7 92.5 92.4 92.9

Table A.14  Word accuracies of Eigen-clustering adapted single Gaussian 
triphone system using PCA covariance implementation 
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System vs. 

Adaptation data size 
1 2 3 4 5 6 7 8 9 10 

MLLR 88.9 89.2 91.3 93.0 92.4 92.3 92.4 93.0 93.4 92.2

MAP 88.7 89.7 91.1 91.4 91.8 92.0 92.2 92.3 93.3 93.6

MAPLR 89.3 89.4 90.2 92.5 93.0 92.6 93.1 93.0 92.9 92.3

EV5 91.0 90.8 90.7 91.0 91.0 91.0 91.1 91.0 90.8 90.8

EV10 91.8 91.8 92.0 91.9 91.8 91.9 92.0 91.9 92.0 91.9

EV15 91.4 91.6 91.7 91.9 91.7 91.9 91.8 92.0 92.1 92.2

EV20 91.9 91.4 91.8 92.0 92.0 91.9 92.1 91.9 92.2 92.4

EV30 92.3 92.7 92.5 92.5 92.6 92.8 92.6 92.6 92.6 92.6

EC5 90.7 90.8 90.8 90.9 91.1 91.2 91.1 91.2 91.3 90.9

EC10 91.0 91.3 91.5 91.6 91.4 91.6 91.7 91.7 91.7 91.7

EC15 91.2 91.5 91.4 91.5 91.3 91.3 91.5 91.3 91.3 91.5

EC20 90.7 91.3 91.2 91.4 91.3 91.5 91.3 91.2 91.2 91.2

EC30 89.7 90.6 90.7 91.3 91.3 91.3 91.6 91.5 91.8 91.7

EC30+MAP 91.4 91.6 91.8 92.0 92.2 92.5 92.6 92.7 92.8 92.9

Table A.15  Word accuracies of the six adaptation methods on single Gaussian 
triphone system 

A.2. Animal Vocalization 
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No. of EVs vs. 

Adaptation Data (s) 
3 6 9 12 15 18 21 24 27 30 

1 82.0 82.3 82.0 81.8 81.7 81.7 81.8 81.8 82.0 82.0

2 82.0 82.1 81.9 82.1 82.1 82.1 82.1 82.1 82.1 82.1

3 82.0 82.3 82.0 81.8 81.7 81.7 81.8 81.8 82.0 82.0

4 82.0 82.1 81.9 82.1 82.1 82.1 82.1 82.1 82.1 82.1

5 81.9 82.0 81.8 81.8 81.8 81.8 81.8 81.8 81.8 82.1

6 82.3 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82.1 82.1

7 82.3 82.4 82.4 82.4 82.4 82.4 82.3 82.3 82.3 82.1

8 82.4 82.4 82.1 82.3 82.3 82.3 82.2 82.2 82.2 82.2

9 82.3 82.1 82.0 82.3 82.3 82.2 82.2 82.2 82.2 82.2

10 82.5 82.6 82.4 82.6 82.4 82.7 82.6 82.6 82.6 82.7

11 82.3 82.5 82.7 83.0 82.9 83.0 83.0 82.9 83.0 83.0

12 83.1 82.6 82.6 82.5 82.8 82.8 82.8 82.8 82.8 83.0

13 83.7 83.3 83.2 83.2 83.5 83.5 83.0 83.0 83.1 83.0

14 82.0 82.8 82.8 83.5 83.5 83.8 83.0 83.0 82.8 82.8

15 83.2 83.8 83.8 83.8 83.8 83.8 83.8 83.8 83.8 83.8

20 82.9 84.0 84.0 84.2 84.1 84.4 84.4 84.4 84.1 84.4

30 82.4 84.3 84.5 84.6 84.6 84.5 84.5 84.5 84.6 84.6

40 83.5 84.8 84.6 84.6 84.6 84.6 84.1 84.1 84.0 84.1

50 79.8 87.2 85.8 86.1 86.3 86.2 86.2 86.1 86.0 86.0

60 81.0 87.7 86.7 87.2 86.9 87.1 87.0 86.9 87.0 87.0

70 80.3 88.0 87.4 88.7 88.3 88.3 88.2 88.1 88.0 87.9

75 77.8 88.6 88.8 89.4 89.6 89.2 89.5 89.6 89.6 89.0

Table A.16  Song-type classification accuracies of Eigenvoice adapted single 
Gaussian syllable model system using PCA correlation implementation 
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No. of EVs vs. 

Adaptation Data (s) 
3 6 9 12 15 18 21 24 27 30 

1 81.4 82.3 82.4 83.6 83.7 83.9 83.1 83.4 83.9 83.3

2 82.1 83.3 83.3 83.8 83.7 83.8 83.3 83.3 84.0 83.5

3 82.9 84.1 84.5 84.4 84.6 84.4 84.7 84.8 85.3 85.3

4 84.5 86.9 86.2 86.4 86.7 86.5 86.9 86.9 87.1 87.2

5 83.9 86.7 85.3 86.6 86.6 86.6 86.9 86.9 87.1 87.2

6 84.5 88.0 85.9 86.9 87.2 87.1 87.7 87.3 87.7 87.8

7 84.6 88.0 87.1 86.8 87.3 87.3 87.7 87.7 87.6 87.6

8 83.9 88.3 86.5 87.1 87.6 87.7 88.1 88.0 87.8 88.0

9 83.6 88.4 87.3 88.5 88.8 88.5 88.6 88.5 88.7 88.6

10 84.2 88.4 87.8 88.9 89.0 88.8 89.0 88.8 89.0 89.2

11 84.5 88.2 87.7 88.6 88.6 88.4 88.8 88.7 89.0 89.0

12 84.7 88.5 88.0 88.5 88.8 88.9 89.0 89.0 89.2 89.4

13 85.1 88.9 88.7 89.3 89.3 89.3 89.7 90.0 90.1 90.3

14 85.3 89.8 89.4 89.2 90.2 89.9 90.2 90.2 90.4 90.5

15 85.1 89.8 89.6 89.4 89.9 90.0 90.5 90.1 90.5 90.5

20 86.4 90.5 90.7 90.5 90.8 90.6 90.8 91.0 91.1 91.5

30 86.9 91.2 91.3 91.6 91.6 91.3 91.8 91.5 91.8 91.9

40 85.6 91.8 92.4 92.3 92.3 92.2 92.6 92.4 92.8 92.6

50 86.1 92.4 92.6 92.2 92.2 91.8 92.3 92.3 92.7 92.6

60 84.1 93.0 92.8 92.6 92.8 92.2 92.9 92.8 93.0 92.9

70 85.5 93.1 93.1 93.0 92.8 92.6 93.3 93.3 93.1 93.2

75 82.9 92.6 92.6 92.5 92.5 92.5 93.1 93.1 92.8 92.7

Table A.17  Song-type classification accuracies of Eigenvoice adapted single 
Gaussian syllable model system using PCA covariance implementation 
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No. of ECs vs. 

Adaptation Data (s) 
3 6 9 12 15 18 21 24 27 30 

1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1

2 84.2 84.2 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1

3 84.0 84.4 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2

4 84.2 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4

5 84.1 84.7 84.7 84.4 84.4 84.4 84.4 84.4 84.4 84.2

6 84.1 84.8 84.8 84.8 84.9 84.1 84.4 84.4 84.4 84.4

7 84.4 84.8 84.8 84.7 84.8 84.1 84.1 84.2 84.2 84.2

8 84.4 84.6 84.5 84.5 84.6 84.0 84.1 84.0 84.0 84.0

9 84.9 84.7 84.6 84.5 84.5 84.5 84.5 84.6 84.6 84.6

10 84.9 84.7 84.6 84.4 84.5 84.5 84.5 84.6 84.6 84.6

11 85.0 84.6 84.5 84.5 84.5 84.6 84.6 84.6 84.6 84.6

12 85.2 84.8 84.7 84.6 84.7 84.6 84.9 84.9 84.8 84.8

13 84.6 84.9 84.7 84.5 84.7 84.8 84.9 84.8 84.8 84.8

14 84.5 84.9 84.7 84.7 84.7 84.4 84.4 84.4 84.8 84.8

15 84.7 84.8 84.7 84.7 84.7 84.2 84.2 84.2 84.2 84.2

20 86.3 84.9 84.5 85.1 85.2 84.7 84.8 84.6 84.7 84.7

30 87.4 86.5 85.5 85.4 85.3 85.3 85.5 85.4 85.4 85.4

40 87.4 86.4 85.8 85.7 85.6 85.7 85.9 85.8 85.8 85.8

50 87.9 87.3 86.5 86.1 86.2 86.1 86.2 86.2 86.2 86.2

60 87.0 87.2 86.9 86.8 86.6 86.9 86.7 86.6 86.8 86.5

70 86.0 87.3 87.0 87.0 86.4 86.9 86.9 86.6 86.7 86.7

75 86.0 87.3 87.0 87.0 86.4 86.9 86.9 86.6 86.7 86.7

Table A.18  Song-type classification accuracies of Eigen-clustering adapted 
single Gaussian syllable model system using PCA correlation implementation 
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No. of ECs vs. 

Adaptation Data (s) 
3 6 9 12 15 18 21 24 27 30 

1 84.0 84.0 84.1 84.2 84.3 84.3 84.2 84.2 84.2 84.2

2 84.7 84.5 84.6 84.7 84.9 85.0 84.8 84.8 84.8 85.0

3 85.4 84.7 85.0 85.1 85.0 84.6 84.8 84.7 84.8 84.8

4 84.7 84.9 84.9 85.0 85.0 84.7 84.8 84.7 84.8 84.8

5 84.8 85.4 85.4 85.6 85.7 85.2 85.4 85.2 85.4 85.4

6 84.4 85.5 85.5 85.5 85.7 85.2 85.2 85.2 85.2 85.2

7 84.1 85.7 85.6 85.4 85.0 85.7 85.9 85.9 85.9 85.9

8 84.9 86.8 86.4 85.6 85.9 86.0 86.0 86.0 86.1 86.1

9 85.0 86.8 86.3 85.6 85.7 85.9 86.0 86.0 86.0 86.0

10 84.4 86.8 86.3 86.3 85.9 86.0 86.0 86.0 86.1 86.1

11 83.8 86.2 85.7 85.8 86.0 86.0 86.0 86.0 86.0 86.0

12 82.9 86.1 86.1 86.0 86.1 85.5 85.5 85.5 85.5 85.4

13 83.5 86.1 86.0 86.1 86.1 85.6 85.6 85.6 85.6 85.6

14 83.7 86.2 86.2 86.3 86.2 85.7 86.2 86.3 86.2 86.2

15 84.2 86.3 86.6 86.5 86.4 85.9 85.9 85.9 85.9 86.4

20 84.3 86.3 86.3 87.0 87.1 86.6 86.6 86.5 86.5 87.0

30 84.2 86.4 86.3 86.6 87.1 86.8 86.8 86.6 86.7 86.8

40 82.9 87.2 87.3 86.8 87.1 87.0 87.0 87.1 87.3 87.2

50 82.9 87.2 87.1 86.8 86.6 86.6 86.6 86.9 87.0 87.2

60 83.0 86.8 86.9 86.8 86.9 86.6 86.9 87.1 87.3 87.3

70 83.7 87.3 87.2 87.3 87.5 87.2 87.2 87.1 87.4 87.7

75 83.7 87.3 87.2 87.3 87.5 87.2 87.2 87.1 87.4 87.7

Table A.19  Song-type classification accuracies of Eigen-clustering adapted 
single Gaussian syllable model system using PCA covariance implementation 
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System vs. 

Adaptation data size 
1 2 3 4 5 6 7 8 9 10 

MLLR 88.9 89.2 91.3 93.0 92.4 92.3 92.4 93.0 93.4 92.2

MAP 88.7 89.7 91.1 91.4 91.8 92.0 92.2 92.3 93.3 93.6

MAPLR 89.3 89.4 90.2 92.5 93.0 92.6 93.1 93.0 92.9 92.3

EV5 91.0 90.8 90.7 91.0 91.0 91.0 91.1 91.0 90.8 90.8

EV10 91.8 91.8 92.0 91.9 91.8 91.9 92.0 91.9 92.0 91.9

EV15 91.4 91.6 91.7 91.9 91.7 91.9 91.8 92.0 92.1 92.2

EV20 91.9 91.4 91.8 92.0 92.0 91.9 92.1 91.9 92.2 92.4

EV30 92.3 92.7 92.5 92.5 92.6 92.8 92.6 92.6 92.6 92.6

EC5 90.7 90.8 90.8 90.9 91.1 91.2 91.1 91.2 91.3 90.9

EC10 91.0 91.3 91.5 91.6 91.4 91.6 91.7 91.7 91.7 91.7

EC15 91.2 91.5 91.4 91.5 91.3 91.3 91.5 91.3 91.3 91.5

EC20 90.7 91.3 91.2 91.4 91.3 91.5 91.3 91.2 91.2 91.2

EC30 89.7 90.6 90.7 91.3 91.3 91.3 91.6 91.5 91.8 91.7

EC30+MAP 91.4 91.6 91.8 92.0 92.2 92.5 92.6 92.7 92.8 92.9

Table A.20  Song-type classification accuracies of the six adaptation methods on 
single Gaussian syllable model system 
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