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 The goal of this work is to generalize speech enhancement methods from single 

channel microphones, dual channel microphones, and microphone arrays to distributed 

microphones. The focus has been on developing and implementing robust and optimal 

time domain and frequency domain estimators for estimating the true source signal in this 

configuration and measuring the performance improvement with both objective (e.g., 

signal-to-noise ratios) and subjective (e.g., listening tests) metrics. Statistical estimation 

techniques (e.g., minimum mean-square error or MMSE) with Gaussian speech priors 

and Gaussian noise likelihoods have been used to derive solutions for five basic classes 

of estimators: 1) time domain; 2) spectral amplitude; 3) perceptually-motivated spectral 

amplitude; 4) spectral phase; and 5) complex real and imaginary spectral component. 

Experimental work using different true source signal attenuation factors (e.g., unity, 

linear, and logarithmic) demonstrates significant gains in segmental signal-to-noise ratio 

(SSNR) with an increase in the number of microphones. Of particular importance is the 

inclusion of the optimal MMSE spectral phase estimator to the spectral amplitude 

estimators. Overall, the statistical estimators show tremendous promise for distributed 

microphone speech enhancement of noisy acoustic signals with application to many 

consumer, industrial, and military products under severely noisy environments.
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CHAPTER 1 INTRODUCTION 1 

CHAPTER 1 INTRODUCTION 

 In this chapter, the problem of distributed microphone speech enhancement is 

introduced and related to prior work with single channel microphones, dual channel 

microphones, and microphone arrays. Several microphone configuration scenarios are 

compared in terms of effectiveness of current standard methods. 

1.1. Problem Statement 

 Over the past several decades, there has been a great deal of research in the signal 

processing community on the development and implementation of speech enhancement 

algorithms. Whereas the current state-of-the-art methods work reasonably well for some 

applications, the performance of the algorithms quickly deteriorates under highly noisy 

conditions. In order to improve quality and intelligibility of speech enhancement systems, 

researchers have begun to investigate the use of multichannel (dual, array, and 

distributed) microphones to reduce noise in noisy speech signals and exploit all available 

acoustic and spatial information of the speech and noise sources [1]. Figure 1-1. Figure 

1-2, Figure 1-3, and Figure 1-4 compare the various microphone configurations for clean 

speech s , noise n , attenuation factors ic ,time delays iτ , and microphones iM . 
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Figure 1-1 Single Channel Microphones 

 

Figure 1-2 Dual Channel Microphones 
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Figure 1-3 Microphone Array 
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Figure 1-4 Distributed Microphones 
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While single channel microphones require the speakers to be relatively close to the 

microphone and dual channel microphones involve a reference noise microphone [2], 

microphone arrays [3] necessitate close-spacing of the microphones and a priori 

knowledge of the array geometry with the distances between individual array elements 

small enough to allow for spatial signal processing without aliasing and justify 

assumptions of noise correlation across the channels [2, 4-8]. Distributed microphones 

generalize single channel microphones, dual channel microphones, and microphone 

arrays. Speakers may be far away from the microphones, which are spread throughout a 

large area with unknown spacing and configurations and no longer satisfy the array 

assumptions. Table 1-1 provides a summary of the different microphone scenarios. 
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Configuration Comments Performance Application 

Single Channel 
Microphones 

Common in practice 
Speech 

enhancement 
degrades 

significantly in 
the presence of 

background 
noise 

Hands-free and 
mobile 

communication 

Requires subjects 
close to the 
microphone 

Extensive research 
and existing 
algorithms 

Dual Channel 
Microphones 

Common in practice Speech 
enhancement 
improves over 
single channel 
microphone in 

presence of 
background 

noise 

Hearing aids 

Requires reference 
microphone with 

only noise 

Significant research 
and existing 
algorithms 

Microphone Arrays 

Common in practice 
Speech 

enhancement 
improves over 
single channel 
microphone in 

presence of 
background 

noise 

Hearing aids 

Requires close 
microphone spacing 

and a priori 
knowledge of 

geometry 

Good deal of 
research and existing 

algorithms 

Distributed 
Microphones 

Becoming more 
common in practice Speech 

enhancement 
improves over 
single channel 
microphone in 

presence of 
background 

noise 

Speaker spotting, 
identification, and 
tracking systems 

Allows arbitrary 
placement of 
microphones 

Not nearly as much 
research and as 
many existing 

algorithms 

Table 1-1 Microphone Configurations 
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There has been relatively little work for distributed microphone speech enhancement 

compared to single channel microphones, dual channel microphones, and microphone 

arrays. Table 1-2 shows the common methods for performing speech enhancement for 

each of the microphone configurations. 

Method Single Channel 
Microphones 

Dual Channel 
Microphones 

Microphone 
Arrays 

Distributed 
Microphones 

Speech 
Enhancement 

Spectral 
Subtraction [9] 

Adaptive Noise 
Cancellation [2] 

Fixed 
Beamforming 

[3] 

Wiener Filter 
[10] 

Wiener Filter [11]

Short-Time 
Spectral 

Amplitude 
Estimation [5] 

Log-Spectral 
Amplitude 

Estimation [6] 

Adaptive 
Beamforming 

[3] 

Short-Time 
Spectral 

Amplitude 
Estimation [7] 

Perceptually-
Motivated 
Spectral 

Amplitude 
Estimation [12] 

Complex Real and 
Imaginary 
Spectral 

Component 
Estimation [13] 

Table 1-2 Traditional Methods for Speech Enhancement 

In order to advance the current state-of-the-art speech enhancement methods for 

distributed microphones, it is important to generalize the existing work from single 

channel microphones, dual channel microphones, and microphone arrays. 
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1.2. Research Objectives 

 The ultimate goal of this research is to develop and implement a novel framework 

through statistical estimation [14, 15] for performing distributed microphone speech 

enhancement on noisy speech signals. The distributed microphone statistical estimators 

are categorized into the following classes: 

1. Time Domain Estimation 

2. Spectral Amplitude Estimation 

3. Perceptually-Motivated Spectral Amplitude Estimation 

4. Spectral Phase Estimation 

5. Complex Real and Imaginary Spectral Component Estimation 

For the spectral amplitude estimators, the key component to improvements in quality and 

intelligibility is due to the spectral phase estimator. Overall, the derived systems have the 

ability to estimate the true source signal with application to many consumer, industrial, 

and military products. 

1.3. Dissertation Overview 

 The remainder of this dissertation is organized into the following sections: 

Background (CHAPTER 2), Theoretical Methods (CHAPTER 3), Experimental Work 

(CHAPTER 4), and Conclusion (CHAPTER 5).
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CHAPTER 2 BACKGROUND 

 In this chapter, the fundamental concepts and standard methods are introduced for 

speech enhancement involving various microphone configuration scenarios: single 

channel microphones, dual channel microphones, microphone arrays, and distributed 

microphones. Noise estimation techniques, which are a central element of the speech 

enhancement estimators, are discussed along with an overview of the speech 

enhancement process. With each of the methods, the mathematics are highlighted in both 

the time domain and frequency domain along with appropriate performance evaluation 

metrics. 

2.1. Overview 

 The goal of speech enhancement is to increase both the quality and intelligibility 

of the noisy speech signals. Figure 2-1 shows the basic process of performing speech 

enhancement on the single channel production model that consists of the clean speech 

signal s  with uncorrelated additive noise d . 

( )y n ( )ŝ n

( )s n

( )d n

 

Figure 2-1 Speech Enhancement Applied to Single Channel Production Model 
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From Figure 2-1, the basic time domain single channel model is 

 ( ) ( ) ( )y t s t d t= +  (2.1) 

or, in the discrete time domain 

 ( ) ( ) ( )y n s n d n= + , (2.2) 

where ( )s n , ( )d n , and ( )y n  are the clean signal, noise signal, and noisy signal at time 

t nT= . Application of a speech enhancement algorithm to the noisy signal ( )y n  creates 

an estimate of the clean signal ( )ŝ n . 

 Performance can be measured by either objective or subjective metrics. Whereas 

the objective quality is measured through the output signal-to-noise ratio (SNR) and 

segmental signal-to-noise ratio (SSNR), the subjective quality is measured through 

listening tests such as the widely-used Mean Opinion Score [16]. The objective quality 

metrics of SNR and SSNR are defined as 

 
( )

( ) ( )

2

10 210 log
ˆ

n

n

s n
SNR

s n s n

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
−⎡ ⎤⎜ ⎟⎣ ⎦

⎝ ⎠

∑

∑
 (2.3) 

and 

 
( )

( ) ( )

2

10 2

1 10log
ˆ

n

M

s n
SSNR

M s n s n

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
−⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

∑
∑

∑
 (2.4) 
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for frames m M∈ . For subjective quality metrics, listening test subjects are asked to 

assign a score from 1-5 to each of the speech signals. Table 2-1 describes the rankings for 

MOS. 

Rating Speech Quality Level of Distortion 

5 Excellent Imperceptible 

4 Good Just perceptible but not 
annoying 

3 Fair Perceptible and slightly 
annoying 

2 Poor Annoying but not 
objectionable 

1 Unsatisfactory Very annoying and 
objectionable 

Table 2-1 MOS Five-Point Scale 

In order to improve either the objective quality or subjective quality, the crucial factor in 

any speech enhancement system is the ability to accurately estimate the noise ( )d n  in 

either the time domain or frequency domain. 

2.2. Noise Estimation 

 The noise estimate for performing speech enhancement can be obtained in either 

the time domain or frequency domain from the noisy observation model 

 ( ) ( ) ( )y n x n d n= +  (2.5) 
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with uncorrelated additive noise ( )d n . By dividing ( )y n  into overlapping frames and 

applying a window function (e.g., Hanning or Hamming), (2.5) can be analyzed in the 

frequency domain as 

 ( ) ( ) ( )
21

0

,
N j nk

N

n

Y k l y n lM h n e
π⎛ ⎞− − ⎜ ⎟

⎝ ⎠

=

= +∑ , (2.6) 

where k  is the frequency bin index, l  is the time frame index, h  is the analysis window 

of size N , and M  is the frame update step in time. The presence or absence of speech in 

the l th frame of the k th frequency bin are described by the hypotheses 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

0

1

, :  , ,

, :  , , ,

H k l Y k l D k l

H k l Y k l X k l D k l

=

= +
, (2.7) 

where ( ),X k l  and ( ),D k l  represent the short-time Fourier transform (STFT) of the 

clean signal and noise signal. The spectral noise variance, which is denoted as 

( ) ( ) 2
, ,d k l E D k lλ ⎡ ⎤=

⎣ ⎦
 in the k th frequency bin, is commonly tracked and estimated by 

applying a temporal recursive smoothing to the noisy observation ( ),Y k l  during periods 

of speech absence. In particular, the update equations for speech absence and speech 

presence are 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
0

1

ˆ ˆ, :  , 1 , 1 ,
ˆ ˆ, :  , 1 ,

d d d d

d d

H k l k l k l Y k l

H k l k l k l

λ α λ α

λ λ

′ + = + −

′ + =
, (2.8) 

where dα  is a smoothing parameter defined as 0 1dα< < . Overall, there are several 

techniques for estimating the spectral noise variance ( ),d k lλ  that include the simple 
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silence detection as well as more advanced methods such as Minimum Statistics (MS) 

[17] and Recursive Averaging [18, 19]. 

2.2.1. Silence Detection 

 Silence detection is perhaps the simplest form of estimating the noise statistics for 

a given noisy speech utterance. Voice activity detectors (VADs) [20] are used to 

determine periods of speech absence and speech presence based on comparing an extract 

feature (e.g., short-time energy, zero-crossings) against a particular threshold, which is 

usually determined during speech absence periods. Based on the labeled speech absence 

and speech presence regions, the noise spectrum is estimated as 

 ( )
( )( ) ( ) ( )

1

0

1ˆ , ,
1

L

l
N k l I l Y k l

C I l

−

=

=
= ∑ , (2.9) 

where the indicator function ( )I l  is defined by 

 ( )
1,  speech absence
0,  speech presence

I l ⎧
= ⎨
⎩

 (2.10) 

with ( )( )1C I l =  representing the count of frames in which ( ) 1I l = . As an even simpler 

approach, the first L  frames of the noisy signal can be assumed to contain silence (i.e., 

strictly noise) and the noise spectrum is estimated by averaging those initial L  frames 

before the occurrence of speech in the 1L +  frame. 

 The reliability of the noise estimate from silence detection methods severely 

deteriorates for weak speech components, low input SNR, and insufficient non-speech 

sections. Although the approaches work satisfactorily for stationary noise conditions 
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(e.g., white noise), silence detectors often fail in more realistic non-stationary noise 

conditions (e.g., restaurant noise) with constantly changing spectral noise characteristics. 

Therefore, the better scheme for estimating the noise spectrum requires tracking the noise 

spectrum continuously over time during speech absent and speech present frames through 

methods such as Minimum Statistics [17] and Recursive Averaging [18, 19]. 

2.2.2. Minimum Statistics 

 Minimum Statistics (MS) [17] is a method for estimating the power spectral 

density of non-stationary noise that does not use voice activity detection (VAD). 

Fundamentally, the approach tracks spectral minima in each frequency band without any 

distinction between speech activity and speech pause. The optimal smoothing parameter 

for recursive smoothing of the power spectral density of the noisy speech signal is based 

on minimizing a conditional mean-square error (MSE) estimation criterion in each time 

step. From the optimally smoothed power spectral density estimate and analysis of the 

statistics of the spectral minima, an unbiased noise estimator is developed that is well-

suited for real time implementation. The smoothing parameter α  is 

 ( ) ( )
( )
( )

max
2,

, 1
1 ˆ , 1 1

c
opt

d

k
k l

P k l
k l

α α
α

λ

=
⎛ ⎞−

+ ⎜ ⎟⎜ ⎟− −⎝ ⎠

 (2.11) 

with 
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 ( )
( )

( )

21

0
1 2

0

1

, 1
1 1

,

c M

k
M

k

l
P k l

Y k l

α
−

=
−

=

=
⎛ ⎞

−⎜ ⎟
⎜ ⎟+ −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

, (2.12) 

and the smoothing power spectrum ( ),P k l  is 

 ( ) ( ) ( ) ( )( ) ( ) 2
, , , 1 , ,P k l k l P k l k l Y k lα α= + − , (2.13) 

where the short-term periodogram ( ) 2
,Y k l  is calculated for each frame l . From the 

normalized variance 

 
( )

( )( )
( )4

ˆvar ,1
ˆ, 2 , 1eq d

P k l

Q k l k lσ
≈

−
, (2.14) 

the bias factor minB  is calculated by 

 ( ) ( )
( )min
2, 1 1 ˆ ,eq

B k l D
Q k l

≈ + − , (2.15) 

where D  is the window length in number of frames l  to search for the minimum. To 

determine the minimum, minP  is computed and updated as 

 ( ) ( ) ( ){ }min , min , 1 , ,tmpP k l P k l P k l= −  (2.16) 

with temporary variable tmpP  given as 

 ( ) ( ), ,tmpP k l P k l=  (2.17) 

for mod l
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and otherwise as 
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 ( ) ( ) ( ){ }min min, min , 1 , ,P k l P k l P k l= −  (2.18) 

with 

 ( ) ( ) ( ){ }, min , 1 , ,tmp tmpP k l P k l P k l= − . (2.19) 

From (2.15) and minP , the noise power spectrum density is computed and updated as 

 ( ) ( ) ( )2
min minˆ , , ,d k l B k l P k lσ = . (2.20) 

This estimator has superior ability to preserve weak speech sounds and deliver excellent 

intelligibility as compared to more traditional noise estimation approaches [17]. 

2.2.3. Recursive Averaging 

 Minima Controlled Recursive Averaging (MCRA) [18] is an approach for noise 

estimation that averages past spectral power values using a smoothing parameter adjusted 

by signal presence probability in each of the sub-bands. Presence of speech in the sub-

bands is determined by the ratio between the local energy of the noisy speech and its 

minimum within a specified time window. The local energy of the noisy speech is 

obtained by smoothing the magnitude squared short-time Fourier transform (STFT) in 

both the time and frequency domains. In the frequency domain, the smoothed magnitude 

squared STFT is 

 ( ) ( ) ( ) 2
, ,

w

f
i w

S k l b i Y k i l
=−

= −∑ , (2.21) 

where b  represents a window function such as Hamming or Hanning with length 2 1w +  

and k  and l  are the frequency bin index and frame. In the time domain, the smoothing is 

performed by a first-order recursive averaging 
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 ( ) ( ) ( ) ( ), , 1 1 ,s s fS k l S k l S k lα α= − + −  (2.22) 

with parameter ( )0,1sα ∈ . The minimum of the local energy ( )min ,S k l  is searched by 

first initializing the minimum ( ) ( )min , 0 ,0S k S k=  and temporary ( ) ( ), 0 ,0tmpS k S k=  

variables. Then, there is a sample-wise comparison of the local energy and minimum 

value of the previous frame to produce the minimum value for the current frame as 

 ( ) ( ) ( ){ }min min, min , 1 , ,S k l S k l S k l= −  (2.23) 

with 

 ( ) ( ) ( ){ }, min , 1 , ,tmp tmpS k l S k l S k l= − . (2.24) 

If l  is divisible by the number of read frames L , then (2.23) and (2.24) are rewritten as 

 ( ) ( ) ( ){ }min , min , 1 , ,tmpS k l S k l S k l= −  (2.25) 

with 

 ( ) ( ), ,tmpS k l S k l=  (2.26) 

with the search continuing again with (2.23) and (2.24). With the threshold δ , the ratio 

 ( ) ( )
( )min

,
,

,r

S k l
S k l

S k l
=  (2.27) 

is computed to decide the speech presence regions in the indicator function ( ),I k l  as 

 ( )
( ) ( )
( ) ( )

, 1,  if ,  (speech present)
,

, 0,  if ,  (speech absent)
r

r

I k l S k l
I k l

I k l S k l

δ

δ

= >⎧⎪= ⎨
= <⎪⎩

. (2.28) 



CHAPTER 2 BACKGROUND 17 

Consequently, the speech presence probability ( ),p k l  is smoothed over time using a 

first-order recursive averaging 

 ( ) ( ) ( ) ( )ˆ ˆ, , 1 1 ,p pp k l p k l I k lα α′ ′= − + −  (2.29) 

with parameter ( )0,1pα ∈ . With (2.29), the time-varying smoothing parameter dα  is 

computed as 

 ( ) ( ) ( ), 1 ,d d dk l p k lα α α ′= + − , (2.30) 

which is then substituted into the noise estimator ˆ
dλ  

 ( ) ( ) ( ) ( ) ( ) 2ˆ ˆ, 1 , , 1 , ,d d d dk l k l k l k l Y k lλ α λ α+ = + −⎡ ⎤⎣ ⎦ . (2.31) 

The MCRA noise estimation algorithm is a computationally efficient method, robust with 

respect to the input SNR and SSNR and type of underlying uncorrelated additive noise, 

and characterized by the ability to quickly track abrupt changes in the noise spectrum for 

non-stationary noises [18]. 

 Improved Minima Controlled Recursive Averaging (IMCRA) [19] is an extension 

of the MCRA noise estimation algorithm that involves non-stationary noise, weak speech 

components, and low input SNR. The noise estimate is obtained by averaging past 

spectral power values using a time-varying, frequency-dependent smoothing parameter 

adjusted by the signal presence probability, which is controlled by minima values of a 

smoothing periodogram. Fundamentally, the IMCRA algorithm consists of two iterations: 

1) rough VAD in each frequency band and 2) smoothing that excludes relatively strong 
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speech components. By using (2.22), the smooth power spectrum ( ),S k l  is updated in 

the first iteration as 

 ( ) ( ) ( ){ }min min, min , 1 , ,S k l S k l S k l= −  (2.32) 

with 

 ( ) ( ) ( ){ }min_ min_min , ,sw swS k S k S k l= . (2.33) 

Based on the threshold parameters 

 ( )
( )

( )

2

min
min min

,
,

,
Y k l

k l
B S k l

γ =  (2.34) 

and 

 ( ) ( )
( )min min

,
,

,
S k l

k l
B S k l

ς = , (2.35) 

the indicator function ( ),I k l  is computed as 

 ( ) ( ) ( )min 0 01,  ,  and ,  (speech absent)
,

0,  otherwise (speech present)
k l k l

I k l
γ γ ς ς< <⎧⎪= ⎨

⎪⎩
. (2.36) 

For the second iteration, the smoothing power spectrum ( ),S k l  is computed as in (2.22) 

with 

 ( )

( ) ( ) ( )

( ) ( )
( )

( )

2
, ,

,  if , 0
, ,

, 1 ,  otherwise

w

w
i w

w
i wf

i w

b i I k i l Y k i l
I k i l

S k l b i I k i l

S k l

=−

=−

=−

⎧
− −⎪

⎪ − ≠⎪= ⎨ −
⎪
⎪

−⎪⎩

∑
∑

∑  (2.37) 
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and updated as 

 ( ) ( ) ( ){ }min min, min , 1 , ,S k l S k l S k l= −  (2.38) 

with 

 ( ) ( ) ( ){ }min_ min_min , ,sw swS k S k S k l= . (2.39) 

From the threshold parameters 

 ( )
( )
( )

2

min
min

,
,

,

Y k l
k l

B S k l
γ =  (2.40) 

and 

 ( ) ( )
( )min min

,
,

,
S k l

k l
B S k l

ς = , (2.41) 

the a priori speech absence probability estimator is computed by 

 ( )

( ) ( )

( ) ( )

min 0

1 min
min 1 0

1

1,  if , 1 and ,

ˆ , ,  if 1 ,  and ,
1

0,  otherwise

k l k l

q k l k l k l

γ ς ς

γ γ
γ γ ς ς

γ

≤ <⎧
⎪
⎛ ⎞−⎪= < < <⎨⎜ ⎟−⎝ ⎠⎪
⎪
⎩

. (2.42) 

The speech presence probability ( ),p k l  is calculated as 

 ( ) ( )
( ) ( )( ) ( )( )

1
,

, 1 1 , exp ,
1 ,

q k l
p k l k l v k l

q k l
ξ

−
⎧ ⎫⎪ ⎪= + + −⎨ ⎬−⎪ ⎪⎩ ⎭

, (2.43) 
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where ( ) ( )( )0, ,q k l P H k l=  is the a priori probability for speech absence with 
2

2
X

N

σ
ξ

σ
=  

and 
1

v ξ γ
ξ

=
+

, where 
2

2
N

Y
γ

σ
= . In a similar fashion to the MCRA noise estimation 

algorithm, the time-varying, frequency-dependent smoothing parameter is updated as in 

(2.30) but with the noise estimator written as 

 ( ) ( )ˆ , 1 , 1d dk l k lλ βλ+ = + , (2.44) 

where dλ  is estimated as in (2.31) with bias compensation factor β . In comparison to the 

MCRA [18] noise estimation technique, the IMCRA algorithm obtains a lower estimation 

error and improves speech quality and lowers residual noises for speech enhancement 

[19]. 

2.3. Single Channel Enhancement 

 With the estimate of the noise statistics, the estimate of the clean speech signal 

( )ŝ t  can be obtained through several time domain or frequency domain methods. In the 

next section, traditional single channel speech enhancement methods are explained in 

detail. 

2.3.1. Spectral Subtraction 

 Spectral subtraction [21] is a noise suppression algorithm that reduces the spectral 

effects of acoustically-added noise in speech. The basic assumption is that the desired 

clean signal ( )s t  has been corrupted by uncorrelated additive noise ( )n t  to produce a 

noisy signal as in (2.2). In the frequency domain, (2.2) is written as 
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 ( ) ( ) ( ), , ,Y k l X k l N k l= + . (2.45) 

From (2.45), the power spectrum is computed as 

 ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2
, , , 2 , , cos ,Y k l X k l N k l X k l N k l k lθ= + + , (2.46) 

where ( )( )cos ,k lθ  is the random angle between the two complex variables for the 

speech ( ),X k l  and noise ( ),N k l . By assuming that ( ),X k l  and ( ),N k l  are orthogonal 

to each other, ( )( )cos , 0k lθ =  and (2.46) is rewritten as 

 ( ) ( ) ( )2 2 2
, , ,Y k l X k l N k l= +  (2.47) 

or 

 ( ) ( ) ( )2 2 2
, , ,X k l Y k l N k l= − . (2.48) 

While ( ) 2
,Y k l  can be directly computed from the given noisy observation ( ),Y k l , 

( ),N k l  must be determined by means of a noise estimation technique. The clean speech 

signal is defined in the frequency domain as 

 
( ) ( ) ( )

( ) ( )

,

,

, ,

,

j X k l

j k l

X k l X k l e

X k l e α

∠

∠

=

=
, (2.49) 

which needs an estimate of the spectral amplitude ( ),X k l  and spectral phase ( ),k lα . 

Similarly, the noisy speech signal is defined in the frequency domain as 

 
( ) ( ) ( )

( ) ( )

,

,

, ,

,

j Y k l

j k l

Y k l Y k l e

Y k l e ϑ

∠

∠

=

=
. (2.50) 
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With the noisy signal spectral phase ( ),k lϑ  serving as the estimate of the clean signal 

spectral phase ( )ˆ ,k lα  and squared spectral amplitude in (2.48), the clean signal ( ),X k l  

in (2.49) is estimated as 

 ( ) ( ) ( ) ( )
1

2 2 ,2ˆ , , , j k lX k l Y k l N k l e ϑ⎡ ⎤= −
⎣ ⎦ . (2.51) 

From (2.51), the clean signal estimate ( )x t  is computed by using the inverse short-time 

Fourier transform (I-STFT). Figure 2-2 illustrates the spectral subtraction technique. 

( )y t

( )Y ω

( )N̂ ω

( )x̂ t

( )
2

N̂ ω

( ) 2
Y ω

( )
2

X̂ ω

( )X̂ ω

( )ϑ ω

+
−

 

Figure 2-2 Spectral Subtraction 

Spectral subtraction is a computationally simple signal enhancement algorithm that 

exhibits significant noise reduction but experiences warbling noise with tonal quality 
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referred to as musical noise [22], which results from rapid changes with frequency [21] 

and misestimation of the noise spectrum [20] primarily in unvoiced segments of the 

speech with similar levels of noise power and speech power. 

2.3.2. Wiener Filter 

 Wiener filtering [11] is the optimal minimum mean-square error (MMSE) linear 

filter for suppressing additive noise in a noisy signal in either the time domain or 

frequency domain [23]. In the time domain, the estimation error ( )e n  is computed as the 

difference between the desired signal ( ) ( )d n x n=  and estimated desired signal ( )d̂ n  as 

 

( ) ( ) ( )

( ) ( )

( )

1

0

ˆ
M

k
k

T

e n d n d n

d n h y n k

d n h y

−

=

= −

= − −

= −

∑ , (2.52) 

where [ ]0 1 1, ,...,T
Mh h h h −=  is the finite impulse response (FIR) filter coefficient vector 

and ( ) ( ) ( ), 1 ,..., 1Ty y n y n y n M= − − +⎡ ⎤⎣ ⎦  is the input vector containing the past M  

samples of the input for 0,1,2,...n = . To determine the optimal filter coefficients, the 

MSE of (2.52) is written as 

 ( ) ( )2 2 2 T T
yd yyJ E e n E d n h r h R h−⎡ ⎤ ⎡ ⎤= = − +⎣ ⎦ ⎣ ⎦  (2.53) 

and minimized as 

 ( ) ( )
0 2

k k

e nJ E e n
h h

∂⎡ ⎤∂
= = ⎢ ⎥∂ ∂⎣ ⎦

 (2.54) 

for 0,1,..., 1k M= − . From (2.52), the partial derivative for the error ( )e n  in (2.54) is 
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( ) ( )

k

e n
y n k

h
∂

= − −
∂

. (2.55) 

By substitution of (2.55) into (2.54), 

 ( ) ( )2 0
k

J E e n y n k
h
∂

= − − =⎡ ⎤⎣ ⎦∂
, (2.56) 

which is the orthogonality principle of optimum linear filtering. In vector and matrix 

notation, (2.56) is written as 

 2 2 0T
yd yy

J r h R
h

−∂
= − + =

∂
 (2.57) 

with 

 *
yy ydR h r−=  (2.58) 

or 

 * 1
yy ydh R r− −= , (2.59) 

which are the Wiener-Hopf solutions [24]. In (2.59), 

( ) ( ) ( ) ( )( ) ( )1 1ydr E yd n E y n y n y n M d n− ⎡ ⎤= = − ⋅ ⋅ ⋅ − +⎡ ⎤⎣ ⎦ ⎣ ⎦  is defined as the cross-

correlation vector ( )1M ×  between the input and desired signals and T
yyR E yy⎡ ⎤= ⎣ ⎦  is 

the autocorrelation matrix ( )M M×  of the input signal. To evaluate the time domain 

Wiener filter, yyR  and ydr−  must be computed in (2.59). By definition, 

 T
yy xx nnR E yy R R⎡ ⎤= = +⎣ ⎦ , (2.60) 
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where the last expectation two terms in (2.60) are zero since the speech and noise are 

assumed uncorrelated and zero-mean. By using the assumption of uncorrelated speech 

and noise, the cross-correlation vector ydr−  is 

 ( )yd xxr E yd n r− = =⎡ ⎤⎣ ⎦  (2.61) 

Through (2.60) and (2.61), the Wiener filter in the time domain for (2.59) is rewritten as 

 
( )

* 1

1

yy yd

xx nn xx

h R r

R R r

− −

−

=

= +
. (2.62) 

 As an alternative derivation to the time domain FIR Wiener filter in (2.62), the 

Wiener filter can be derived in the frequency domain as a two-sided, infinite impulse 

response (IIR) filter. In the frequency domain, the estimate of the desired response 

( ) ( )k kD Xω ω=  is 

 ( ) ( ) ( )ˆ
k k kD H Yω ω ω=  (2.63) 

with estimation error 

 
( ) ( ) ( )

( ) ( ) ( )

ˆ
k k k

k k k

E D D

D H Y

ω ω ω

ω ω ω

= −

= −
, (2.64) 

where ( )kH ω  is the gain function that is applied to the noisy observation ( )kY ω . To 

compute ( )kH ω , the MSE of (2.64) is defined as 

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2*

k

k k dy k k yd k k yy k

J E E

E D H P H P H P

ω

ω ω ω ω ω ω ω

⎡ ⎤=
⎣ ⎦

⎡ ⎤= − − +
⎣ ⎦

 (2.65) 
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and minimized with respect to ( )kH ω  as 

 
( ) ( ) ( ) ( )*0 yd k k yy k

k

J P H P
H

ω ω ω
ω

∂
= = − +

∂
, (2.66) 

where 

 ( ) ( ) ( ) ( )*
yd k k k xx kP E Y D Pω ω ω ω⎡ ⎤= =⎣ ⎦  (2.67) 

and 

 ( ) ( ) ( ) ( )*
dy k k k yd kP E D Y Pω ω ω ω⎡ ⎤= =⎣ ⎦  (2.68) 

and 

 ( ) ( ) ( ) ( ) ( )*
yy k k k xx k nn kP E Y Y P Pω ω ω ω ω⎡ ⎤= = +⎣ ⎦  (2.69) 

with ( )kP ω•• serving as the power spectrums. By solving (2.66) for the gain function 

( )*
kH ω  and substituting (2.68) and (2.69), the Wiener filter in the frequency domain is 

written as 

 ( ) ( )
( )

( )
( ) ( )

* yd k xx k
k

yy k xx k nn k

P P
H

P P P
ω ω

ω
ω ω ω

= =
+

 (2.70) 

or 

 ( ) ( )
( )

*

1
k

k
k

H
ξ ω

ω
ξ ω

=
+

, (2.71) 

where ( )kξ ω  is the a priori SNR defined as 



CHAPTER 2 BACKGROUND 27 

 ( ) ( )
( )

xx k
k

nn k

P
P

ω
ξ ω

ω
= . (2.72) 

As a note, the Wiener filter in (2.70) is IIR and non-causal, which means that it is not 

realizable in its current form. In comparison to spectral subtraction method, which 

requires only an estimate of the noise power spectrum ( )xx kP ω , Wiener filtering requires 

both an estimate of the power spectrum of both the clean speech power spectrum 

( )xx kP ω  and noise power spectrum ( )nn kP ω . Since the Wiener filter in (2.70) requires an 

estimate of the unknown ( )xx kP ω , (2.70) can be reformulated in an iterative form. Figure 

2-3 illustrates the iterative Wiener filtering process. 

( )y t

( )x̂xP ω

( )Y ω

( )n̂nP ω

( ) ( )
( ) ( )

ˆ
ˆ ˆ

xx

xx nn

P
H

P P
ω

ω
ω ω

=
+ ( )x̂ t

 

Figure 2-3 Frequency Domain Iterative Wiener Filter 

As with spectral subtraction, Wiener filters in both the time domain (2.62) and frequency 

domain (2.71) still suffer from musical tones in the enhanced speech signal but show 

improvements in SNR and SSNR performance. 
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2.3.3. Short-Time Spectral Amplitude Estimation 

 As opposed to the optimal linear MMSE estimator, the non-linear MMSE short-

time spectral amplitude (STSA) estimator [5] can be derived for the clean speech 

spectrum. From (2.45), the noisy observation ( ),Y k l  can be expressed in terms of its 

spectral amplitude and spectral phase as 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

, ,

, , ,

, , ,

, , ,

j Y k l j X k l

j k l j k l

Y k l X k l N k l

Y k l e X k l e N k l

R k l e A k l e N k lϑ α

∠ ∠

∠ ∠

= +

= +

= +

 (2.73) 

or 

 Re j jAe Nϑ α∠ ∠= +  (2.74) 

without explicit dependencies k  and l . By minimizing the MSE between the true 

spectral amplitude A  and estimated true spectral amplitude Â  and using Bayes rule, the 

MMSE STSA estimator is written as 

 
( ) ( )

( ) ( )

2

0 0
2

0 0

, ,
ˆ

, ,
STSA

Ap Y A p A d dA
A E A Y

p Y A p A d dA

π

π

α α α

α α α

∞

∞= ⎡ ⎤ =⎣ ⎦
∫ ∫

∫ ∫
 (2.75) 

with speech prior 

 ( )
2

2 2, exp
x x

A Ap A α
πσ σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.76) 

and noise likelihood 
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 ( )
2

2 2

1, exp
j

n n

Y Ae
p Y A

α

α
πσ σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (2.77) 

as the assumed statistical models with statistical independence between the spectral 

components ( ),Y k l . After substitution of the statistical models in (2.76) and (2.77), the 

result from (2.75) is 

 

2
22

2
2 2

0 0

2
22

2 2
0 0

exp exp

ˆ

exp exp

j

x n

STSA
j

x n

Y AeAA d dA

A
Y AeAA d dA

απ

απ

α
σ σ

α
σ σ

∞

∞

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

. (2.78) 

The integration over the spectral phase α  is performed by expansion of the term 

( ) ( )2 22j j j

R I
Y Ae Y Ae Y Aeα α α− = − + −  and extracting the constants from the integral as 

 

( )

2
2

2
0

2 2 2

2
0

exp

exp exp cos sin

j

n

n

Y Ae
d

Y A
a b d

απ

π

α
σ

α α α
σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠
⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∫

∫

, (2.79) 

where 

 ( )2

2 Re
n

Aa Y
σ

=  (2.80) 

and 

 ( )2

2 Im
n

Ab Y
σ

= . (2.81) 
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From trigonometric identities, the sum of cosine and sine terms with different amplitudes 

and the same phase is written as 

 2 2cos sin cos arctan ba b a b
a

α α α⎛ ⎞⎛ ⎞+ = + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (2.82) 

where 

 2 2
22
n

Ya b A
σ

+ = . (2.83) 

Since the integral in (2.79) for the spectral phase α  is over one full period, the spectral 

phase shift of arctan b
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is removed from (2.82). By means of equation 8.431.1 in [25], 

the integral in (2.79) is rewritten as 

 ( )
2

0 2
0

exp cos sin 2 2
n

Ya b d I A
π

α α α π
σ

⎛ ⎞
+ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ , (2.84) 

where ( )0I x  is the modified Bessel function of the first kind of order 0, which reduces 

(2.78) to the form 

 

2 2
0 2

0

2
0 2

0

1exp 2
ˆ

1exp 2

n
STSA

n

YA A I A dA
A

YA A I A dA

λ σ

λ σ

∞

∞

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∫
. (2.85) 

Through substitution of equations 8.406.3 and 6.631.1 in [26] and [25], the estimator is 

expressed as 
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( ) ( )

( ) ( )

1 1

0 1

ˆ 1.5 0.5;1;

1.5 exp 1
2 2 2

STSA
vA F v R

v v v vv I vI R

γ

γ

= Γ − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Γ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.86) 

with 

 
1

v ξ γ
ξ

=
+

 (2.87) 

and 

 
2

2
x

n

σ
ξ

σ
=  (2.88) 

and 

 
2

2
n

Rγ
σ

= , (2.89) 

where ξ  and γ  are the a priori and a posteriori SNR and ( )Γ •  and ( )1 1 ; ;F • • •  denote 

the gamma function and confluent hypergeometric function as described by equation 

9.210 in [25]. The gain function STSAG  is defined as 

 ( ) ( ) 0 1

ˆ
1.5 exp 1

2 2 2
STSA

STSA
A v v v vG v I vI

R γ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = Γ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.90) 

or 

 ˆ
STSA STSAA G R= , (2.91) 

which reformulates the optimal MMSE STSA estimator as a filter similar to the Wiener 

filter. Based on the spectral amplitude estimator Â , there is a significant reduction of 
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noise and enhanced speech with colorless noise compared to the spectral subtraction and 

Wiener filter methods [5]. 

 In the STSA estimator in (2.86), ˆ
STSAA  requires estimation of the spectral noise 

variance 2
nσ  and spectral speech variance 2

xσ . Whereas the spectral noise variance 2
nσ  

can be estimated using various noise estimation techniques, the spectral speech variance 

2
xσ  can be estimated using a maximum likelihood (ML) estimate or decision-directed 

approach (DD) [5]. By maximizing the joint conditional 

 

( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )

2 2

21

2 22 2
0

, ,

,1 exp

x n

L

l x nx n

p Y k n k k

R k n l
k kk k

σ σ

σ σπ σ σ

−

=

⎛ ⎞−
= −⎜ ⎟⎜ ⎟++ ⎝ ⎠
∏

, (2.92) 

the ML spectral speech variance estimator in the l th analysis frame is 

 ( ) ( ) ( )
1

2 2
2

0

1 , ,  if non-negative
ˆ

0,  otherwise

L

n
lx

R k n l k
k L

σ
σ

−

=

⎧
− −⎪= ⎨

⎪⎩

∑ . (2.93) 

From (2.88) and (2.93), the a priori SNR ξ  is written as 

 ( ) ( )
1

0

1 , 1,  if non-negativeˆ

0,  otherwise

L

l

k n l
k L

γ
ξ

−

=

⎧
− −⎪= ⎨

⎪⎩

∑ . (2.94) 

In contrast, the derivation of the DD approach is based on the definition of the a priori 

SNR ξ  

 ( )
( )
( )

2

2

,
,

,n

E A k n
k n

k n
ξ

σ

⎡ ⎤⎣ ⎦=  (2.95) 
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and its relation to the a posteriori SNR γ  

 ( ) ( ), , 1k n E k nξ γ= −⎡ ⎤⎣ ⎦ . (2.96) 

From (2.95) and (2.96), ξ  is written as 

 ( ) ( )
( ) ( )( )

2

2

, 11 1, , 1
2 2, 1n

A k n
k n E k n

k n
ξ γ

σ
⎡ ⎤−

= + −⎢ ⎥
−⎢ ⎥⎣ ⎦

. (2.97) 

The DD estimator ξ̂  is deduced from (2.97) as 

 ( ) ( )
( ) ( ) ( )

2

2

ˆ , 1ˆ , 1 , 1
, 1n

A k n
k n P k n

k n
ξ α α γ

σ
−

= + − −⎡ ⎤⎣ ⎦−
, (2.98) 

where α  is a smoothing parameter defined as 0 1α≤ ≤  and [ ]P •  is the operator 

 [ ] ,  if 0
0,  otherwise
x x

P x
≥⎧

= ⎨
⎩

. (2.99) 

By combining the DD estimator in (2.98) with the MMSE STSA estimator in (2.86), the 

best speech enhancement results are obtained from the noisy observations. 

2.3.4. Log-Spectral Amplitude Estimation 

 Similarly to the MMSE STSA, the non-linear log-spectral amplitude estimator 

(LSA) is also an MMSE spectral amplitude estimator for speech enhancement [5, 27]. 

While the MMSE STSA estimator minimizes the squared error between the spectral 

amplitude and estimated spectral amplitude, the MMSE LSA minimizes the squared error 

between the log-spectral amplitude and estimated log-spectral amplitude, which is a more 



CHAPTER 2 BACKGROUND 34 

subjectively meaningful distortion measure that correlates well with human perception 

[6]. The MMSE LSA estimator is written as 

 
( )( )

( )
ˆ exp ln

exp

LSAA E A Y

E Z Y

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦
. (2.100) 

In the log-spectral amplitude estimator in (2.100), the expectation E Z Y⎡ ⎤⎣ ⎦  is evaluated 

by 

 ( )
0

Z Y
dE Z Y

d μ

μ
μ =

⎡ ⎤⎡ ⎤ = Φ⎣ ⎦ ⎣ ⎦ , (2.101) 

where ( )Z Y E A Yμμ ⎡ ⎤Φ = ⎣ ⎦  is defined as the moment-generating function 

 ( )
( ) ( )

( ) ( )

2

0 0
2

0 0

, ,

, ,
Z Y

A p Y A p A d dA

p Y A p A d dA

π
μ

π

α α α
μ

α α α

∞

∞Φ =
∫ ∫

∫ ∫
. (2.102) 

After substitution of (2.76) and (2.77), (2.102) is expressed as 

 ( )

2
22

1
2 2

0 0

2
22

2 2
0 0

exp exp

exp exp

j

x n

Z Y
j

x n

Y AeAA d dA

Y AeAA d dA

απ
μ

απ

α
σ σ

μ

α
σ σ

∞
+

∞

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Φ =
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

. (2.103) 

The integration over the spectral phase α  is performed exactly as for the spectral 

amplitude estimator. By employing (2.79)-(2.84), (2.103) is written as 
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 ( )

1 2
0 2

0

2
0 2

0

1exp 2

1exp 2

n
Z Y

n

YA A I A dA

YA A I A dA

μ

λ σ
μ

λ σ

∞
+

∞

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Φ =
⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∫
, (2.104) 

where 

 2 2

1 1 1

x nλ σ σ
= + . (2.105) 

Through application of equations 8.406.3 and 6.631.1 in [26] and [25], ( )Z Y μΦ  is 

expressed as 

 ( ) 1 1
2

1
2 ;1;

21
Z Y F vμ

μ
μμ

λ

⎛ ⎞Γ +⎜ ⎟ ⎛ ⎞⎝ ⎠Φ = − −⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

, (2.106) 

where 

 

2

2

1
n

Y

v
σ

λ

=  (2.107) 

and ( )Γ •  and ( )1 1 ; ;F • • •  denote the gamma function and confluent hypergeometric 

function as described by equation 9.210 in [25]. 

 The differentiation of (2.106) with respect to μ  results in three derivative terms 

that are written as 
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=
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⎡ ⎤
⎢ ⎥
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⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞+ Γ + − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛+ Γ + − −⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎝ ⎠ 0μ=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎞

⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.108) 

and evaluated at 0μ = . The derivative of the first term is evaluated exactly as in [6] 

using 

 1 1 ln 1
2 2 2

d d
d d

μ μ μ
μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + = Γ + Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
. (2.109) 

Through the series expansion given by equation 8.342.1 in [26], the last term in (2.109) is 

rewritten as 

 ( )
2

ln 1
2 2 2

r

rr
r

c
r
μμ μ α

∞

=

−⎛ ⎞⎛ ⎞Γ + = − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , (2.110) 

where 2μ < , c  is Euler’s constant, and 

 
1

1
r r

n n
α

∞

=
∑ . (2.111) 
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By differentiating (2.110) term-by-term and evaluating (2.109) at 0μ = , the derivative of 

the first term in (2.108) is 

 
0

1
2 2

d c
d

μ

μ
μ

=

⎡ ⎤⎛ ⎞Γ + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (2.112) 

The derivative of the second term 
21
μ

λ

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 in (2.108) is computed in a straightforward 

manner by rewriting it in exponential form and evaluating at 0μ =  as 
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2 0
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1 1 ln
21

d d e
d d

μ λ

μ

μ
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=

=
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. (2.113) 

For the computation of the third term, the confluent hypergeometric function 

1 1 ;1;
2

F vμ⎛ ⎞− −⎜ ⎟
⎝ ⎠

 is differentiated through its series expansion from equation 9.210.1 in 

[25] as 
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∑ , (2.114) 

where ( ) ( ) ( )1 1 ... 1
r

a a a a r= ⋅ ⋅ + ⋅ ⋅ + −  with ( )0
1a . By differentiating (2.114) term-

by-term and evaluating at 0μ = , the derivative is 
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==
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∑ . (2.115) 
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By combining the three derivative results in (2.112), (2.113), and (2.115), (2.108) reduces 

to 

 

( )

( ) ( ) ( ) ( )

( ) ( )
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1 1 1 1
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⎢ ⎥= − + +
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∑

∑

, (2.116) 

where ( )1 1 0;1; 1F v− = . From equations 8.211.1 and 8.214.1 in [26], (2.116) is rewritten 

as 
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t

v
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v
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t
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∫

∫
. (2.117) 

From (2.100), the estimator is expressed as 

 1ˆ exp
1 2

t

LSA
v

eA dt R
t

ξ
ξ

∞ −⎛ ⎞
= ⎜ ⎟+ ⎝ ⎠

∫  (2.118) 

or 

 
ˆ 1exp

1 2

t
LSA

LSA
v

A eG dt
R t

ξ
ξ

∞ −⎛ ⎞
= = ⎜ ⎟+ ⎝ ⎠

∫  (2.119) 

with the a priori SNR ξ  and v  defined in (2.88) and (2.87). Figure 2-4 shows the block 

diagram of computing the enhanced clean speech estimate ( )ŝ t . 
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Figure 2-4 Log-Spectral Amplitude (LSA) Estimation 

In general, the optimal MMSE LSA estimator ˆ
LSAA  is the standard single channel 

baseline method for comparison against other methods and provides significant reduction 

of noise, yields enhanced speech with colorless residual noise, and greatly suppresses the 

musical tone side effects [6]. 

2.3.5. Perceptually-Motivated Spectral Amplitude Estimation 

 Bayesian risk functions can be introduced to produce a variety of different 

spectral amplitude estimators [20]. The Bayes risk is represented as 
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( )
( ) ( )

( ) ( ) ( )

ˆ,

ˆ, ,

ˆ,

B E d A A

d A A p A Y dAdY

p Y d A A p A Y dA dY

⎡ ⎤ℜ = ⎣ ⎦

=

⎡ ⎤= ⎣ ⎦

∫ ∫
∫ ∫

, (2.120) 

where the minimization of the inner integral in (2.120) with respect to the spectral 

amplitude estimate Â  results in an estimator for each particular cost function. For the 

STSA cost function [5] 

 ( ) ( )2ˆ ˆ,STSAd A A A A= −  (2.121) 

and LSA cost function [6] 

 ( ) ( ) ( )( )2ˆ ˆ, ln lnLSAd A A A A= − , (2.122) 

the resulting estimators are 

 ˆ
STSAA E A Y= ⎡ ⎤⎣ ⎦  (2.123) 

and 

 ( )( )ˆ exp lnLSAA E A Y= ⎡ ⎤⎣ ⎦ . (2.124) 

In order to incorporate cost functions with perceptual weighting in the estimator, the 

weighted Euclidean (WE) 

 ( ) ( )2ˆ ˆ, p
WEd A A A A A= −  (2.125) 

and weighted cosh (WCOSH) 
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( )

( ) ( )( )

ˆ1ˆ, 1ˆ2

cosh ln 1ˆ

ˆcosh ln ln 1

p
WCOSH

p

p

A Ad A A A
AA

A A
A

A A A

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (2.126) 

cost functions can be used in (2.120) to construct the optimal MMSE spectral amplitude 

estimators as 

 
( ) ( )

( ) ( )

2
1

0 0
2

0 0

, ,
ˆ

, ,

p

WE
p

A p Y A p A d dA
A

A p Y A p A d dA

π

π

α α α

α α α

∞
+

∞=
∫ ∫

∫ ∫
 (2.127) 

and 

 
( ) ( )

( ) ( )

2
1

2 0 0
2

1

0 0

, ,
ˆ

, ,

p

WCOSH
p

A p Y A p A d dA
A

A p Y A p A d dA

π

π

α α α

α α α

∞
+

∞
−

=
∫ ∫

∫ ∫
 (2.128) 

with parameter p . By substitution of the statistical models in (2.76) and (2.77), the 

results from (2.127) and (2.128) are 

 

2
22

2
2 2

0 0

2
22

1
2 2

0 0

exp exp

ˆ

exp exp

j
p

x n

WE
j

p

x n

Y AeAA d dA

A
Y AeAA d dA

απ

απ

α
σ σ

α
σ σ

∞
+

∞
+

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

 (2.129) 

and 
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2
22

2
2 2

0 0
2

2
22

2 2
0 0

exp exp

ˆ

exp exp

j
p

x n

WCOSH
j

p

x n

Y AeAA d dA

A
Y AeAA d dA

απ

απ

α
σ σ

α
σ σ

∞
+

∞

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

. (2.130) 

The integration over the spectral phase α  is performed exactly as for the STSA and LSA 

estimators. By employing (2.79)-(2.84), (2.129) and (2.130) are written as 

 

2 2
0 2

0

1 2
0 2

0

1exp 2
ˆ

1exp 2

p

n
WE

p

n

YA A I A dA
A

YA A I A dA

λ σ

λ σ

∞
+

∞
+

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∫
 (2.131) 

and 

 

2 2
0 2

02

2
0 2

0

1exp 2
ˆ

1exp 2

p

n
WCOSH

p

n

YA A I A dA
A

YA A I A dA

λ σ

λ σ

∞
+

∞

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∫
, (2.132) 

where 1
λ

 is defined in (2.105). By utilizing 8.406.3 and 6.631.1 in [26] and [25], (2.131) 

and (2.132) are written in terms of the gamma function ( )Γ •  and confluent 

hypergeometric function ( )1 1 ; ;F • • •  described by 9.210 in [25] as 

 
1 1

1
2

1 1

3 3 ;1;
12 2 2ˆ

211 ;1;
2 2

WE

p pF z
A

p pF z
λ

+⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

+⎛ ⎞ ⎛ ⎞Γ + ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.133) 

and 
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1 1

2

1 1

3 3 ;1;
12 2 2ˆ
11 1;1;

2 2 2

WCOSH

p pF z
A

p pF z
λ

+⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

+⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (2.134) 

where 

 

1
2 2

1
2

1
11

xσ
ξ

λ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.135) 

and 

 
21

1 1
xσ
ξ

λ

=
+

. (2.136) 

By using (2.87)-(2.89) in (2.135) and (2.136), the estimators in (2.133) and (2.134) can 

be expressed as 

 

1 11 ;1;
2 2ˆ

1 ;1;
2 2

WE

p p v
vA R

p p vγ

+ +⎛ ⎞ ⎛ ⎞Γ + Φ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞Γ + Φ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.137) 

and 

 

3 1;1;
1 2 2ˆ

1 1;1;
2 2

WCOSH

p p v
A v R

p p vγ

+ +⎛ ⎞ ⎛ ⎞Γ Φ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

+ −⎛ ⎞ ⎛ ⎞Γ Φ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (2.138) 

Figure 2-5 shows comparisons of the optimal MMSE perceptually-motivated cost 

function estimators in (2.137) and (2.138) against the traditional STSA and LSA 
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estimators in (2.86) and (2.118) based on SSNR improvement in a speech enhancement 

task. 

 

Figure 2-5 SSNR Improvements for Single Channel Weighted Euclidean (WE) and 
Single Channel Weighted Cosh (WCOSH) Spectral Amplitude Estimation with Single 

Channel Spectral Phase Estimation 

From the enhancement results, the optimal MMSE perceptually-motivated spectral 

amplitude estimators achieved the best performances with less residual noise and higher 

speech quality compared to the standard single channel STSA and LSA estimators [12]. 
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2.3.6. Spectral Phase Estimation 

 In order to reconstruct the clean signal estimate ( )ŝ t , the optimal MMSE spectral 

phase estimator α̂  must be determined from (2.74) that does not alter the optimal MMSE 

spectral amplitude estimators for ˆ
STSAA  and ˆ

LSAA  and ˆ
WEA  and ˆ

WCOSHA  given in (2.86) and 

(2.118) and (2.137) and (2.138). By formulating the optimal MMSE spectral phase 

estimator α̂  as a constrained Lagrange multiplier problem 

 

2ˆ

ˆ

min

subject to 1

j

j j

e

j

E e e

e

α

α α

α

⎡ ⎤−⎢ ⎥⎣ ⎦

=
 (2.139) 

or 

 
( )2

,
min 1

subject to 1

j

g
E e g Y g

g

α

ρ
ρ⎡ ⎤− + −⎢ ⎥⎣ ⎦

=
 (2.140) 

with 

 ˆj
R Ig e g jgα= = +  (2.141) 

and ρ  representing the Lagrange multiplier, the constrained optimal MMSE spectral 

phase solution is 

 1ˆ tan I

R

g
g

α − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (2.142) 

From (2.140), the important relationship between Rg  and Ig  in (2.141) is 
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sin

cos
I

R

E Yg
g E Y

α

α

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

. (2.143) 

After expanding the terms in the expectation with Euler’s identity conditioned on the 

noisy spectral coefficients Y , (2.140) is written as 

 
( )

( ) ( ) ( )

2

,

1
2 2 2 2 2

,

min 1

min cos sin

j

g

R I R Ig

E e g Y g

E g Y E g Y g g

α

ρ

ρ

ρ

α α ρ ρ

⎡ ⎤− + −⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + − + + −⎣ ⎦ ⎣ ⎦

, (2.144) 

which requires computation of the partial derivatives of 
[ ]( )

0
R

E
g

∂ •
=

∂
 and 

[ ]( )
0

I

E
g

∂ •
=

∂
. 

The partial derivatives with respect to Rg  and Ig  are computed to find the solutions of 

[ ]( )
0

R

E
g

∂ •
=

∂
 and 

[ ]( )
0

I

E
g

∂ •
=

∂
 as 

 ( )2 2 cosRg E Yρ α+ = ⎡ ⎤⎣ ⎦  (2.145) 

and 

 ( )2 2 sinIg E Yρ α+ = ⎡ ⎤⎣ ⎦ . (2.146) 

The fundamental relationship between the real and imaginary components is shown in 

(2.143) with 

 
( ) ( )

( ) ( )

2

0 0
2

0 0

cos , ,
cos

, ,

p Y A p A d dA
E Y

p Y A p A d dA

π

π

α α α α
α

α α α

∞

∞⎡ ⎤ =⎣ ⎦
∫ ∫

∫ ∫
 (2.147) 

and 
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( ) ( )

( ) ( )

2

0 0
2

0 0

sin , ,
sin

, ,

p Y A p A d dA
E Y

p Y A p A d dA

π

π

α α α α
α

α α α

∞

∞⎡ ⎤ =⎣ ⎦
∫ ∫

∫ ∫
, (2.148) 

which closely resemble the integration performed in (2.75), (2.100), (2.127), and (2.128) 

but with different arguments in the expectation operators. After substituting the statistical 

models for the speech prior (2.76) and noise likelihood (2.77), (2.147) and (2.148) are 

rewritten as 

 

2
22

2 2
0 0

2
22

2 2
0 0

exp cos exp

cos

exp exp

j

x n

j

x n

Y AeAA d dA

E Y
Y AeAA d dA

απ
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α α
σ σ

α

α
σ σ

∞

∞

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎡ ⎤ =⎣ ⎦ ⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

 (2.149) 

and 

 

2
22

2 2
0 0

2
22

2 2
0 0

exp sin exp

sin

exp exp

j

x n

j

x n

Y AeAA d dA

E Y
Y AeAA d dA

απ

απ

α α
σ σ

α

α
σ σ

∞

∞

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎡ ⎤ =⎣ ⎦ ⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

. (2.150) 

By utilizing (2.79), the inner integral over the spectral phase α  in (2.149) is expanded as 

 ( )
2

2 2

2
0 0

cos exp cos exp cos sin
j

n

Y Ae
d a b d

απ π

α α α α α α
σ

⎛ ⎞−⎜ ⎟− ∝ +
⎜ ⎟
⎝ ⎠

∫ ∫ . (2.151) 

Through (2.82), the integral over the spectral phase α  in (2.151) is further rewritten as 
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 ( ) ( )
2 2

0 0

cos exp cos sin cos cosa b d d
π π

α α α α α α ψ α+ = −∫ ∫ , (2.152) 

where 

 1tan b
a

ψ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.153) 

and a , b , and 2 2a b+  are shown in (2.80), (2.81), and (2.83). By using the product-to-

sum cosine trigonometric identity, (2.152) simplifies to 

 ( ) ( )
2 2 22 2

0 0 0

2 2

cos cos cos cos 2
2

cos

a bd d d

a b

π π π

α α ψ α ψ α α ψ α

π ψ

⎡ ⎤+
− = + −⎢ ⎥

⎣ ⎦

= +

∫ ∫ ∫  (2.154) 

since the spectral phase shift of ψ  in the second integral over the spectral phase α  in 

(2.154) is irrelevant for the limits of integration. From (2.79) and (2.154), (2.151) is 

written as 

 
2

2
2 2

2
0

cos exp cos
j

n

Y Ae
d a b

απ

α α π ψ
σ

⎛ ⎞−⎜ ⎟− ∝ +
⎜ ⎟
⎝ ⎠

∫ . (2.155) 

In a similar manner, the inner integral over the spectral phase α  in (2.150) is 

 
2

2 2
2

0

sin exp cos
j

n

Y Ae
d a b

απ

α α π θ
σ

⎛ ⎞−
⎜ ⎟− ∝ +
⎜ ⎟
⎝ ⎠

∫ , (2.156) 

where 

 1

2 2
sin a

a b
θ − ⎛ ⎞
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+⎝ ⎠
. (2.157) 
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Through (2.155) and (2.156), the expectations in (2.149) and (2.150) are written as 
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∫

∫
 (2.158) 

and 
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∫

∫
 (2.159) 

with 1
λ

 shown in (2.105). By utilizing the expectations from (2.158) and (2.159) and 

employing the definitions (2.153) and (2.157), the spectral phase estimator is 

 1 1cosˆ tan tan
cos

b
a

θα ϑ
ψ

− −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, (2.160) 

where a  and b  are specified in (2.80) and (2.81). Specifically, the single channel optimal 

MMSE spectral phase estimator is simply the spectral phase of the noisy observation Y . 

2.3.7. Complex Real and Imaginary Spectral Component Estimation 

 In the previous optimal MMSE spectral amplitude estimators, the fundamental 

assumption has been to model the speech prior and noise likelihood as Gaussian 

distributions for the spectral amplitude and spectral phase. In contrast, an alternative 

approach is to determine the MMSE estimate of the real and imaginary spectral 
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components using Gaussian distributions [13]. By expressing the noisy observation Y  in 

the frequency domain with the real and imaginary components as 

 
R I R I

Y S N
Y jY S jS N

= +
+ = + +

, (2.161) 

the optimal MMSE estimator for the real and imaginary clean spectral components is 
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∫
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∫

, (2.162) 

where ,R IS  denotes RS  and IS  but in a more compact form. After substitution of the 

speech prior 

 ( )
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,
, 2

1 exp R I
R I

SS

S
p S

σπσ

⎛ ⎞
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⎝ ⎠
 (2.163) 

and noise likelihood 

 ( ) ( )2
, ,

, , 2

1 exp R I R I
R I R I

NN

Y S
p Y S

σπσ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (2.164) 

for the Gaussian Noise-Gaussian-Speech statistical models, (2.162) is written as 
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or 
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, (2.166) 

where 1
λ

 is defined in (2.105). By splitting the integral in both the numerator and 

denominator in (2.166) into two separate integrals and utilizing the relationship 3.462.1 

in [25], 
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and 
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⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

, (2.168) 

where ( )D• •  is the parabolic cylinder function defined by 9.240 in [25]. With (2.167) 

and (2.168), (2.166) is rewritten as 
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, (2.169) 

where 

 

11
2 221 22

2 1
Sσ

λ ξ

− ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠
. (2.170) 

The arguments to the parabolic cylinder function are simplified to 
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 (2.171) 

and defined as 
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 ( ) ( )
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1
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σ
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+

 (2.172) 

using the same notation as in [13]. Through the substitution of (2.170) and (2.172), 

(2.169) is rewritten as 

 ( )( ) ( )( )
( )( ) ( )( )

1
2 2 2 2, ,
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1 1, ,
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− −+ −

⎡ ⎤−⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦

. (2.173) 

By simplifying the ratio of the parabolic cylinder functions in (2.173), the ratio is 

rewritten as 
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. (2.174) 

With (2.174), the estimator for the real and imaginary clean spectral components with 

Gaussian Noise-Gaussian Speech models in (2.173) is 

 ( ) ,, ,
ˆ

1 R IR I N NS Yξ
ξ− =

+
. (2.175) 

In comparison to the Wiener filter and optimal STSA and LSA estimators, the real and 

imaginary clean spectral component MMSE estimator in (2.175) can generate small 

improvements in SNR and SSNR performance. 
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2.4. Dual Channel Enhancement 

 Besides performing speech enhancement using a single channel microphone, there 

are many estimation techniques that utilize multiple microphones for improving both the 

quality and intelligibility. In the subsequent section, dual channel microphone speech 

enhancement is introduced as an alternative and extension to the traditional and well-

established single channel microphone speech enhancement. 

2.4.1. Adaptive Noise Cancellation 

 Adaptive Noise Cancellation (ANC) [2] is an optimal filtering method employed 

for dual channel microphone signal processing scenarios in either the time domain or 

frequency domain. Figure 2-6 demonstrates the dual channel ANC method. 

( )d n

( )u n ( )y n

( )e n

++

−

 

Figure 2-6 Dual Channel Adaptive Noise Cancellation (ANC) 
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From Figure 2-6, the primary input consists of a desired signal ( )d n  defined as 

 ( ) ( ) ( )pd n s n v n= +  (2.176) 

with the reference input ( )u n  defined as 

 ( ) ( )ru n v n= , (2.177) 

where ( )pv n  and ( )rv n  are correlated noises at the two microphone channels. From 

(2.177), it is clear that the reference input ( )u n contains only noise, not any speech. After 

the adaptive filter, the output ( )y n  is 

 ( ) ( ) ( )
1

0

ˆ
M

T
i

i

y n w n u n i w u
−

=

= − =∑  (2.178) 

with weights w  that must be determined for each of the M  samples of ( )u n . At the end 

of the adaptive filtering process, the error ( )e n  is computed as 

 ( ) ( ) ( )e n d n y n= −  (2.179) 

and then passed back into the adaptive filter for further processing. The goal is to 

calculate and update the weights w  through numerous iterations to minimize the error in 

(2.179). Specifically, the minimization of the MSE ( ) 2
E e n⎡ ⎤
⎣ ⎦

 will cause the two 

correlated noises ( )pv n  and ( )rv n  to match each other and produce ideally zero error 

with ( ) ( )d n s n= . Depending on the algorithm [23], the weight update (e.g., Least Mean 

Squares or LMS) will typically have the form 
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 ( ) ( ) ( ) ( )*ˆ ˆ1w n w n u n e nμ+ = + , (2.180) 

where μ  is the step-size parameter. In the frequency domain, the weight update has a 

similar form as the time domain weight update in (2.180) [28]. Due to the adaptive 

capability of the algorithm, speech enhancement systems can process inputs with possibly 

unknown and non-stationary characteristics and automatically terminate when noticing 

no further improvement in SNR and SSNR. Overall, the dual channel ANC scheme 

yields noises and signal distortions that are smaller than single channel optimal filtering 

configurations. 

2.5. Microphone Array 

 Microphone arrays [3] consist of multiple microphones that require close-spacing 

of the microphone elements and a priori knowledge of the array geometry. Beamforming 

[8] is a microphone array speech enhancement method that performs spatial filtering to 

discriminate between the different signals based on the physical location of the sources. 

The goal is to estimate the signal arriving from a desired look direction in the presence of 

noise and interfering signals. Beamformers work by forming a scalar output signal as a 

weighted combination of the source data received at an array of sensors with the weights 

determining the spatial filtering characteristics. There are two basic classes of 

beamformers: fixed (conventional) beamformer and adaptive beamformer. While fixed 

beamformers combine the noisy signals through a time-invariant delay-and-sum or filter-

and-sum strategy, adaptive beamformers combine the noisy signals through a time-

variant filter-and-sum strategy. By exploiting the spatial dimension of the situation, 

microphone arrays can acquire a high-quality speech signal without requiring the subject 



CHAPTER 2 BACKGROUND 57 

to talk directly into a single channel microphone [3]. In the next section, fixed 

beamforming and adaptive beamforming is presented for microphone arrays. 

2.5.1. Fixed Beamforming 

 The simplest microphone array processing strategy for speech enhancement is 

delay-and-sum beamforming. In order to steer an array of arbitrary configuration and 

number of microphone sensors iM  for 1,...,i M=  to the main lobe of the directivity 

pattern, the signals received by the array are first delayed to compensate for the path 

length differences from the source to the various microphone elements and then 

combined together through a weighting process. Delay-and-sum beamforming can be 

mathematically expressed in either the time domain as 

 [ ] [ ]
1

0

M

m m
m

y n w x n τ
−

=

= −∑  (2.181) 

or frequency domain as 

 ( ) ( )
1

2

0

m

M
j f

m
m

y f w x f e π τ
−

−

=

= ∑ , (2.182) 

where mw  is the fixed weight applied to the signal received at a particular microphone m  

with time delay mτ . Figure 2-7 shows the basic process of delay-and-sum beamforming. 
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Figure 2-7 Delay-and-Sum Beamforming 

While there are many approaches for determining the weights mw , the most straight-

forward approach is to set 1
mw

M
= , where M  is the total number of microphones in the 

array. To estimate the time delay mτ  at each of the microphones, the majority of methods 
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are based on cross-correlation and similar to the methods used for Time-Difference-of-

Arrival (TDOA) with source location [29]. 

 As a generalization of the delay-and-sum beamformer, the filter-and-sum 

beamformer uses an associated filter for each microphone to filter each of the captured 

signals before combining them. Filter-and-sum beamforming can be expressed in either 

the time domain as 

 [ ] [ ] [ ]
1 1

0 0

M P

m m m
m p

y n h p x n p τ
− −

= =

= − −∑∑  (2.183) 

or frequency domain as 

 ( ) [ ] ( ) ( )
1 1

2

0 0

m
M P

j f p
m m

m p
y f h p x f e π τ

− −
− +

= =

= ∑∑ , (2.184) 

where [ ]mh p  is the p th tap of the filter associated with the given microphone m . With 

simply one tap filter 1p =  for each microphone m , the time domain and frequency 

domain filter-and-sum beamformers in (2.183) and (2.184) are equivalent to time domain 

and frequency domain delay-and-sum beamformers in (2.181) and (2.182). 

2.5.2. Adaptive Beamforming 

 In contrast to fixed beamforming with constant, time invariant weights, adaptive 

beamforming dynamically adjusts the weights according to some optimization criterion 

on either a sample-by-sample (time domain) or frame-by-frame (frequency domain) 

basis. For the optimization criterion, adaptive beamforming techniques usually rely on 

the minimization of the MSE between the reference signal that is highly correlated to the 
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desired signal and the output signal. Unfortunately, the normal LMS algorithm often 

degrades the desired signal since it places no conditions upon the distortion to the desired 

signal. To deal with the limitation, Frost’s algorithm [30] treats the filter estimation 

process as a problem in a constrained LMS minimization, where the solution still 

minimizes the MSE while maintaining a specific transfer function for the desired signal. 

Normally, the constraint is designed to ensure that the response to the desired signal has 

constant gain and linear phase. As a result, Frost’s algorithm belongs to a class of 

adaptive beamformers known as linearly constrained minimum variance (LCMV) 

beamformers. 

 In perhaps the most commonly used LCMV adaptive beamforming technique, the 

Griffiths-Jim beamformer (GJBF) [31] or generalized sidelobe canceller (GSC) consists 

of two main processing paths: standard fixed beamformer (FBF) and blocking matrix 

(BM). The inputs are time-aligned and then passed through a filter-and-sum beamformer 

to produce the fixed beamformed signal uy′  as 

 ( ) ( ) ( )T
u cy f w f x f′ ′= , (2.185) 

where 

 ( ) ( ) ( ) ( )1 ,..., ,...,
T

n Nw f w f w f w f= ⎡ ⎤⎣ ⎦  (2.186) 

are the fixed weights for each of the N  microphones with time-aligned input signals 

 ( ) ( ) ( ) ( )1 ,..., ,...,
T

n Nx f x f x f x f′ ′ ′ ′= ⎡ ⎤⎣ ⎦ . (2.187) 

To ensure a specified gain and phase response for the desired signal, the output of the 

FBF is then filtered by a constraint filter uh  with output of the upper path 
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 ( ) ( ) ( )u u uy f h f y f′= . (2.188) 

The output is the adaptive section of the beamformer that is driven by outputs from the 

BM, which removes the desired signal from the lower path. Since the desired signal is 

common to all of the time-aligned microphone inputs, blocking will occur if the rows of 

the BM sum to zero. If x′′  represents the signals at the output of the BM, then 

 ( ) ( )x f Bx f′′ ′= , (2.189) 

where each row of the blocking matrix sums to zero with linearly independent rows. The 

standard Griffiths-Jim (GJ) BM B  is 

 

1 1 0 0 . 0
0 1 1 0 . 0
. . . . . .
. . . . . .
0 . 0 1 1 0
0 . 0 0 1 1

B

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

, (2.190) 

where the number of rows in B  must be 1N −  or less because x′  can have at most 

1N −  linearly independent components. After application of the BM in (2.190), x′′  is 

adaptively filtered and summed to yield the lower path output ay  as 

 ( ) ( ) ( )T
ay f a f x f′′= , (2.191) 

where a  represent the lower path adaptive filters that are updated according to the 

unconstrained LMS algorithm as 

 ( ) ( ) ( ) ( )1k k k ka f a f y f x fμ+ ′′= +  (2.192) 
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with step size μ  and frame number k . Due to the BM, the lower path output only 

contains noise signals. Consequently, the overall system output is calculated as the 

difference of the upper and lower path outputs as 

 ( ) ( ) ( )u ay f y f y f= − . (2.193) 

In practice, adaptive beamformers generally achieve better interference suppression than 

fixed beamformers [3] but experience a degree of distortion to the desired signal called 

signal leakage, which is especially problematic for broadband signals such as speech 

signals since it is difficult to guarantee perfect signal cancellation across a broad 

frequency range [4]. 

2.6. Distributed Microphone Enhancement 

 In the next section, the time domain and frequency domain methods discussed in 

the previous sections for single channel, dual channel, and microphone array speech 

enhancement are now generalized for an arbitrary number of microphones dispersed 

throughout an unknown area for distributed microphone enhancement. 

2.6.1. Wiener Filter 

 In a similar fashion to the optimal single channel MMSE Wiener filter given in 

[11], the optimal multichannel MMSE Wiener filter has been developed for distributed 

microphones [10]. For the time domain, the model is 

 
[ ] [ ] [ ] [ ]

[ ] [ ]
n n n

n n

y k h k s k v k

x k v k

= ⊗ +

= +
, (2.194) 
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which consists of N  microphone signals [ ]ny k  of filtered [ ]nh k  clean speech [ ]s k  and 

uncorrelated additive noise [ ]nv k  with [ ]0,..., 1n N∈ −  at time k . By defining the output 

signal [ ]z k  as 

 [ ] [ ] [ ] [ ] [ ]
1

0

N
T T
n n

n

z k w k y k w k y k
−

=

= =∑ , (2.195) 

the goal is to determine the filter weights [ ]nw k  for recovery of the clean speech signal 

[ ]s k  or one of the n  filtered clean speech components [ ]nx k . In (2.195), the time 

domain quantities [ ]nw k  and [ ]w k  and [ ]ny k  and [ ]y k  are defined as 

 [ ] [ ] [ ] [ ]0 1 1, ,...,
TL

n n n nw k w k w k w k−⎡ ⎤= ⎣ ⎦  (2.196) 

and 

 [ ] [ ] [ ] [ ]0 1 1, ,...,
TT T T

Nw k w k w k w k−⎡ ⎤= ⎣ ⎦  (2.197) 

and 

 [ ] [ ] [ ] [ ]0 1 1, ,...,
TL

n n n ny k y k y k y k−⎡ ⎤= ⎣ ⎦  (2.198) 

and 

 [ ] [ ] [ ] [ ]0 1 1, ,...,
TT T T

Ny k y k y k y k−⎡ ⎤= ⎣ ⎦ . (2.199) 

Through the definition of the error vector e d z= −  with desired response d x= , the 

MSE cost function for optimal filtering is 
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( ) 2 2

2T T T T

J W E e E d y

E d d E y Wd E y WW y

⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (2.200) 

By minimizing (2.200) with respect to W , the optimal multichannel Wiener filter is 

 1
yy ydW R R−= , (2.201) 

where T
yyR E yy⎡ ⎤= ⎣ ⎦  and T

ydR E yd⎡ ⎤= ⎣ ⎦  are the ( )M M×  correlation matrix of the 

input signal y and ( )M M×  cross-correlation matrix of the input signal y  and desired 

signal d . From (2.198)-(2.199), (2.194) is rewritten as 

 [ ] [ ] [ ]y k x k v k= + . (2.202) 

Based on the statistical independence of the speech signal [ ]x k  and noise signal [ ]v k  

 [ ] [ ] [ ] 0T
xvR k E x k v k⎡ ⎤= =⎣ ⎦ , (2.203) 

the ( )M M×  correlation matrix yyR  and ( )M M×  cross-correlation matrix ydR  are 

expressed as 

 [ ] [ ] [ ] [ ] [ ]T
yy xx vvR k E y k y k R k R k⎡ ⎤= = +⎣ ⎦  (2.204) 

and 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]T
yd yx xx yy vvR k R k E y k x k R k R k R k⎡ ⎤= = = = −⎣ ⎦ . (2.205) 

By substitution of (2.204) and (2.205), the optimal multichannel time domain Wiener 

filter in (2.201) is represented as 

 [ ] [ ] [ ]( )1
yy yy vvW R k R k R k−= − , (2.206) 
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where the noise correlation matrix [ ]vvR k  is estimated during speech pauses through a 

VAD algorithm. 

 In a similar derivation to the optimal single channel frequency domain Wiener 

filter, the optimal multichannel frequency domain Wiener filter is calculated from the 

time domain estimate of the desired signal Z X=  as 

 ˆ TZ W Y=  (2.207) 

with estimation error 

 
ˆ

T

E D Z
D W Y

= −

= −
, (2.208) 

where W  is the gain function that is applied to all of the noisy observations Y . To 

compute W , the MSE of (2.208) is defined as 

 

2

2 2T
DY YD YY

J E E

E D W P WP W P

⎡ ⎤= ⎣ ⎦
⎡ ⎤= − − +⎣ ⎦

 (2.209) 

and minimized with respect to W  as 

 *0 YD YY
J P W P
W
∂

= = − +
∂

, (2.210) 

where 

 *
YD XXP E YD P⎡ ⎤= =⎣ ⎦  (2.211) 

and 

 *
DY YDP E DY P⎡ ⎤= =⎣ ⎦  (2.212) 
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and 

 *
YY XX NNP E YY P P⎡ ⎤= = +⎣ ⎦  (2.213) 

with power spectrum ijP , where i  and j  represent the two different signals. By solving 

(2.210) for the gain function *W  and substituting (2.212) and (2.213), the optimal 

multichannel frequency domain Wiener filter is written as 

 * YD XX

YY XX NN

P P
W

P P P
= =

+
 (2.214) 

or 

 *

1
W ξ

ξ
=

+
, (2.215) 

where ξ  is the a priori SNR defined as 

 XX

NN

P
P

ξ = . (2.216) 

The multichannel time domain (2.206) or frequency domain (2.215) Wiener filters have 

better noise reduction performance than the standard single channel time domain (2.62) 

or single channel frequency domain (2.70) Wiener filters [10] since they incorporate 

information from all available channels. 

2.6.2. Spectral Amplitude Estimation 

 As a natural extension to the optimal single channel MMSE STSA given in [5], 

the optimal multichannel MMSE STSA has been devised for the distributed microphone 

scenario by Lotter et al. [7]. Based on the model 
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i i

i i i
j j

i i i

Y S N

R e A e Nϑ α

= +

= +
 (2.217) 

for [ ]1,...,i M∈  with M  microphones and speech prior 
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 (2.218) 

and noise likelihood 
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⎜ ⎟
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 (2.219) 

statistical models, the multichannel STSA is 

 ( ) ( )

( ) ( )

1

2

1
0 0

2

1
0 0

ˆ ,...,

,..., , ,

,..., , ,

STSA
n n M

n M n n n n n n

M n n n n n n

A E A Y Y

A p Y Y A p A d dA
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∞

∞
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=
∫ ∫

∫ ∫

. (2.220) 

From (2.219), the noisy spectral observations iY  are independent from each other given a 

clean spectral amplitude nA  and clean spectral phase nα  at a particular microphone n  

through the relationship 
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, (2.221) 
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where i iA c A=  and 2 2 2
iS i Scσ σ=  for the true clean spectral amplitude A  and true clean 

spectral variance 2
Sσ  with 1ic =  for the attenuation factors. After substitution of (2.218) 

and (2.221), the result from (2.220) is 
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∑∫ ∫
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. (2.222) 

The integration over the spectral phase α  is performed by expansion of the term 

2 2 2

i i ij j ji i i
i n i n i n

n n nR I

c c c
Y A e Y A e Y A e

c c c
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− = − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 and extracting the 

constants from the integral as 
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, (2.223) 

where 
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and 
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From trigonometric identities, the sum of cosine and sine terms with different amplitudes 

and the same phase is written as in (2.82), where 
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c σ=

+ = ∑ . (2.226) 

Since the integral in (2.223) for the spectral phase α  is over one full period, the spectral 

phase shift of arctan b
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is removed from (2.82). By means of equation 8.431.1 in [25], 

the integral in (2.223) is rewritten as 
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which reduces (2.222) 

 

2 2
0 2

10

2
0 2

10

1exp 2
ˆ

1exp 2

i

i

M
i i

n n n
i n NSTSA

n
M

i i
n n n

i n N

c Y
A A I A dA

c
A

c Y
A A I A dA

c

λ σ

λ σ

∞

=

∞

=

⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫

∑∫
. (2.228) 

Through the substitution of equations 8.406.3 and 6.631.1 in [26] and [25], the 

multichannel STSA is 
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where i iA c A=  and 2 2 2
iS i Scσ σ=  and nξ  and nγ  are the a priori and a posteriori SNRs 

defined in [7]. In (2.229), it should be noted that the true clean spectral amplitude nA  is 

estimated at each particular microphone channel n  and equivalent to the corresponding 

single channel spectral amplitude estimator [5]. To completely estimate the clean source 

signal ( )ŝ t  at each microphone n , the clean spectral phase α  is estimated also at each 

microphone n  using the single channel phase estimator ˆn nα ϑ=  [5]. The multichannel 

spectral amplitude and single channel spectral phase estimators together provide gains 

compared to the corresponding single channel estimators [5] from averaging the 

estimates at each of the microphones n , not by directly estimating the true clean source 

signal ( )ŝ t  [7]. 

2.7. Summary 

 In this chapter, speech enhancement was reviewed for single channel, dual 

channel, microphone array, and distributed microphone speech enhancement. The goal 

was to compare and contrast the different algorithms. From the background methods, the 

theory can be extended now to novel distributed microphone speech enhancement 

methods.
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CHAPTER 3 THEORETICAL METHODS 

 In this chapter, theoretical methods and derivations are given for distributed 

microphone statistical estimators for speech enhancement. The basic model is given for 

the time domain and frequency domain estimators along with explanation about the 

assumption of the noise field in the surrounding environment. For each of the estimators, 

the statistical models for both the speech prior and noise likelihood are provided under 

the assumption of independent noisy observations given the true source signal 

information along with the final closed-form solution. 

3.1. Overview 

 In a distributed microphone configuration, multiple microphones [ ]1,...,i M∈  

capture the attenuated and time delayed coherent clean source signal ( )i ic s t τ−  corrupted 

by uncorrelated additive noises ( )in t . By assuming the system can accurately time align 

the M  noisy observations through cross-correlation methods and similar methods used 

for Time-Difference-of-Arrival (TDOA) with source location [29], the time domain 

multichannel microphone model is written as 

 ( ) ( ) ( )i i iy t c s t n t= + ,  (3.1) 

where ( )s t  is the true and spatially stationary source signal and [ ]0,1ic ∈  are time-

invariant attenuation factors. Figure 3-1 illustrates the basic process of performing speech 

enhancement on the distributed microphone production model for estimating the true 

clean source signal ( )s t . 
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Figure 3-1 Speech Enhancement Applied to Distributed Microphone Production Model 

In the frequency domain, (3.1) is expressed in spectral amplitude and spectral phase as 
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λ λ λ

= +

= +
 (3.2) 

or real and imaginary components as 
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Y k c SY k N k

Y k jY k c S k jS k N k

λ λ λ

λ λ λ λ λ

= +

+ = + +⎡ ⎤⎣ ⎦
, (3.3) 

where λ  and k  represent the frame and frequency bin for each microphone i . To 

simplify the notation, (3.2) and (3.3) are rewritten without the explicit dependencies as 

 ij j
i i iR e c Ae Nϑ α= +  (3.4) 

or 

 ( ) ,, , i R I ii R IY c S N= + . (3.5) 
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For each of the estimators, the fundamental key is to accurately and efficiently estimate 

the true clean source signal ( )s t . Figure 3-2 illustrates the operation of speech 

estimators. 

( )p S ( )ip N

ŝ2ˆSσ
2ˆ

iNσ
 

Figure 3-2 Statistical Estimation 

Overall, the goal of this work will be to develop the distributed microphone speech 

enhancement methods shown in Figure 3-1 through the statistical estimation as illustrated 

in Figure 3-2. 

 Depending on the noise correlations, there will be more appropriate microphone 

configurations and speech enhancement methods for a given noisy environment. In 

general, the majority of large area practical noisy environments (e.g., meeting areas, 

cafeterias, airport terminals) involve noise situations that are best characterized by a 

diffuse noise field, where the noise is approximately of equal energy and propagates 

simultaneously in all directions but has low correlation across the different microphones 

[4]. The magnitude-squared coherence (MSC) ( )ijC f  [3] is used to measure the 

correlation of the various noise signals at any two points in space as a function of 
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frequency and ratio of power-spectral densities. For a diffuse noise field, the MSC 

formula is 

 ( )
( )

( ) ( )

2
2

sincij ij
ij

ii jj

P f fd
C f

P f P f c
π⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, (3.6) 

where ijd  is the distance between channels i  and j  and c  is the speed of sound. Figure 

3-3 illustrates the MSC for a diffuse noise field with different microphone distances. 

 

Figure 3-3 Magnitude-Squared Coherence (MSC) 

Since the primary energies of speech are mainly concentrated in the 300-3000 Hz 

frequency range, Figure 3-3 suggests that an assumption of incoherent noise ( 0.1C < ) is 

justified for microphone spacing above ~14 cm and an assumption of true coherent noise 
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( 0.9C > ) is justified only for microphone spacing below ~0.4 cm, which is smaller than 

a typical array. For distributed microphone speech estimators derived in this work, the 

noise field is assumed to be a diffuse noise field that allows for estimation of the noise 

statistics at each of the corresponding microphones in the system. The key point to note is 

that the methods derived in this work will function for an ambient noise field that is even 

roughly uniform in nature but not quite right for point noise sources, which are correlated 

and do not have attenuation factor coefficients. 

3.2. Time Domain Estimation 

 For time domain estimation, the MMSE signal estimator in the presence of only 

white noise will be developed to determine the simple point-by-point estimate of the true 

source signal s . Figure 3-4 illustrates the distributed microphone time domain speech 

enhancement estimator for noise reduction through the utilization of all M  noisy 

microphone signals. 

 

Figure 3-4 Distributed Microphone Time Domain Speech Enhancement System 
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The goal is to find the MMSE estimate of the true source signal s . 

 For the statistical models, the noise prior at each microphone i  are assumed to be 

Gaussian models given as 

 ( ) ( )0,
ii np n N σ= , (3.7) 

where 
inσ  is the standard deviation of the noises. From (3.7), the noise likelihood at a 

particular microphone i  is represented as 

 ( ) ( ),
ii i np y s N c s σ= , (3.8) 

where ic  are the attenuation factors for the clean speech s . By assuming a diffuse noise 

field in a distributed microphone environment, the noise is assumed independent across 

each of the microphones i , which leads to a product of independent Gaussians for the 

true source signal s  given as 

 

( ) ( ) ( )

( )

1
1 1

2

2
11

,..., ,

1 1exp
22

i

ii

M M

M i i n
i i

M M
i i

ii nn

p y y s p y s N c s

y c s

σ

σσ π

= =

==

= =

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∏ ∏

∑∏
. (3.9) 

The conditional joint density in (3.9) can be rewritten as 
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or 
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with mean 
i

i
s

i

y
c

μ =  and standard deviation i

i

n
s

ic
σ

σ = . Based on Bayes theorem 
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the Maximum A Posteriori (MAP) and Maximum Likelihood (ML) estimators are 

determined from the relationships 
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 (3.13) 

and 

 ( )1ˆ arg max ,...,ML M
s

s p y y s= , (3.14) 

where ( )1,..., Mp y y  is the evidence. By assuming a non-informative prior for ( )p s  (i.e., 

( )p s  is uniform over ( ),−∞ ∞ ), (3.13) can be rewritten as 

 ( )1ˆ arg max ,...,MAP M
s

s p y y s= , (3.15) 

which means ˆ ˆMAP MLs s= . With the non-informative prior ( )p s  and Gaussian distribution 

( )1 ,..., Mp y y s , the mean (MMSE), mode (MAP), and median (Maximum Absolute 

Error or MAE) are all equivalent to each other and equal the mean of (3.11) as 
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 ˆ ˆ ˆMAP ML MMSE ss s s μ= = = , (3.16) 

which can be expressed as 
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. (3.17) 

 Through the given statistical models defined in (3.7) and (3.8), the MAP, ML, and 

MMSE time domain estimators of the true source signal s  are given by the conditional 

mean 

 1ˆ ,...,s Ms E y y sμ= = ⎡ ⎤⎣ ⎦ . (3.18) 

By completing the square to determine the mean in (3.11) for (3.18), the closed-form 

solution (see APPENDIX A for details) for ŝ  is 
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where the weights iw  are 
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with the true source standard deviation sσ  and variance 2
is

σ . In (3.20), the weights iw  

are a ratio of SNRs applied to the noisy signals iy  from all other microphones j , except 
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at that particular microphone j i≠ . Ultimately, the noisy observations iy  that contain 

more clean signal s  than noise n  will be weighted higher than noisy observations that 

contain less clean signal than noise. 

3.3. Spectral Amplitude Estimation 

 As opposed to computing the point-by-point estimate of the true source signal 

( )s t  in the time domain and dealing with only white noise, the MMSE estimator will 

now be developed in the frequency domain for estimation of the true source signal based 

on the importance of spectral amplitude and spectral phase on quality and intelligibility 

for any type of noise [20]. Figure 3-5 illustrates the distributed microphone speech 

enhancement system with the fundamental goal of determining the best estimate of the 

true source spectral magnitude A  and spectral phase α . 
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Figure 3-5 Distributed Microphone Spectral Amplitude and Spectral Phase Speech 
Enhancement System 

 By assuming Gaussian statistical models, the speech prior and noise likelihood are 

 ( )
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2 2, exp
S S

A Ap A α
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 (3.21) 

and 
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where 2
Sσ  and 2

iNσ  are the speech and noise spectral variances. Based on the assumption 

of a diffuse noise field for the surrounding environment, the noises are independent at 

each of the microphone channels, which results in the conditional joint distribution of the 

noisy spectral observations { }1,..., MY Y  written as a product of the independent noisy 

spectral observations given by 
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3.3.1. Short-Time Spectral Amplitude Estimator 

 Under the given statistical models and following the same method as [7], the 

MMSE estimate of the STSA is 
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Through substitution of the statistical models in (3.21) and (3.23) into (3.24), the closed-

form solution (see APPENDIX B for details) for ˆ
STSAA  is 
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with 
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where ( )1 1 ; ;F • • •  denotes the confluent hypergeometric function as described by 

equation 9.210 in [25]. From the relationship given by equation 9.212.1 in [25], (3.25) is 

rewritten as 
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Since the spectral amplitude A  and spectral variance 2
Sσ  are attenuated at each 

microphone i  by ic  as i i iA c A=  and 2 2
iS i Scσ σ=  from the original system model, (3.27) 

is simplified to 
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where iξ  is the a priori SNRs and (3.29) is the multichannel extension of v  given in [5]. 

In more specific terms, v  is simply a SNR weighted sum of the noisy spectral 

observations iY  and normalized by the sum of the a priori SNR iξ . For a more efficient 

implementation of the estimator, the confluent hypergeometric function in (3.28) can be 

replaced by the 0th-Order and 1st-Order modified Bessel functions of the 1st kind given by 

equations A.1.31a in [32] as 
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It can be seen that the estimator in (3.30) simplifies to the single channel noise reduction 

filter [5] for the case of 1M = . With rescaling of the attenuation factors to make 1mc =  

at a specific reference channel m , (3.30) reduces to the noise reduction filter in [7] for 

estimating the clean source signal spectral amplitude mA  at each microphone m . The 

only difference between the method given in [7] by Lotter el. al. and the solution given 

above is that (3.30) is an estimate of the original source spectral amplitude rather than the 

estimate of the original source spectral amplitude at a particular microphone channel. 
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3.3.2. Log-Spectral Amplitude Estimator 

 To obtain a more perceptually relevant criteria function [6], the approach from the 

previous section is extended to the log-spectral domain as 
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and ( )
1 1,..., , ...,

M MZ Y Y E A Y Yμμ ⎡ ⎤Φ = ⎣ ⎦  is the moment generating function given as 
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By substitution of the statistical models in (3.21) and (3.23) into (3.33), the closed-form 

solution (see APPENDIX C for details) for ( )
1 ,..., MZ Y Y μΦ  is 
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. (3.34) 

 To complete the derivation of the estimator, it is necessary to differentiate and 

then perform exponentiation on (3.34). The derivative of (3.34) with respect to μ  is 

written as 
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which results in three derivative terms for evaluation at 0μ = . After exponentiation of 

the three derivative terms (see APPENDIX C for details), the closed-form solution of 

ˆ
LSAA  is written as 
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Since the spectral amplitude A  and spectral variance 2
Sσ  are attenuated at each 

microphone i  by ic  as i iA c A=  and 2 2
iS i Scσ σ=  from the original system model, the first 

term in (3.36) can be rewritten as 
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The final closed-form solution of the estimator for the source spectral amplitude is 
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, (3.38) 

where v  is defined as in (3.29) as a weighted and normalized SNR sum of the noisy 

spectral observations iY . It can be seen that the MMSE LSA in (3.38) simplifies to the 
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single channel MMSE LSA estimator [6] for the case of 1M = . As with the estimate of 

the STSA given in (3.30), (3.38) weights lower the noisy spectral observations iY  that 

contain more noise than speech but weights higher the noisy spectral observations that 

contain more speech than noise to determine an estimate of the LSA. 

3.4. Perceptually-Motivated Spectral Amplitude Estimation 

 By modifying the cost function ( )ˆ,d A A  in (2.120), there are many alternative 

estimators related to the common STSA and LSA estimator methods of (2.121) and 

(2.122) for estimating the spectral amplitude of the clean source signal. Since the LSA 

cost function (2.122) deals with a more perceptual relevant criterion and has produced 

higher SNR and SSNR improvements in speech quality than the STSA cost function 

(2.121) for single channel speech enhancement [6], it would seem reasonable that other 

more perceptually-motivated estimators might also give improved performance for 

distributed microphone speech enhancement. In single channel enhancement, the best 

results have occurred with the WE cost function [12] 

 ( ) ( )2ˆ ˆ, p
WEd A A A A A= −  (3.39) 

and WCOSH cost function [12] 

 

( )

( ) ( )( )

ˆ1ˆ, 1ˆ2

cosh ln 1ˆ

ˆcosh ln ln 1

p
WCOSH

p

p

A Ad A A A
AA

A A
A

A A A

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤= − −⎢ ⎥⎣ ⎦

. (3.40) 
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By using these cost functions and the basic estimation formulation (3.39) and (3.40), the 

subsequent true source spectral amplitude estimators for distributed microphone speech 

enhancement are 

 
( ) ( )

( ) ( )

2
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1
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2

1
0 0

,..., , ,
ˆ

,..., , ,

p
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and 
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∫ ∫

∫ ∫
, (3.42) 

which are valid for the parameters 2WEp >  and 1WCOSHp > − . 

3.4.1. Weighted Euclidean Cost Function Spectral Amplitude Estimator 

 From the given Gaussian statistical models (3.21) and (3.23), the closed-form 

solution of the true spectral amplitude estimator ˆ
WEA  using the WE cost function (see 

APPENDIX D for details) in (3.41) is 

 

1
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1 1
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22 2ˆ
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2 2

S
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A

p pF z

σ

ξ
=

⎛ + ⎞⎛ ⎞⎛ ⎞⎛ ⎞ − −Γ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎛ ⎞ ⎛ ⎞⎜ ⎟+Γ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑
, (3.43) 

where z  is defined exactly as in (3.29) and ( )Γ •  and ( )1 1 ; ;F • • •  denote the gamma and 

confluent hypergeometric functions with free parameter 2WEp > . As with the previously 
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derived estimators, (3.43) decays to the single channel perceptually-motivated Bayesian 

noise reduction filter using the WE cost function for the case of 1M = . 

3.4.2. Weighted Cosh Cost Function Spectral Amplitude Estimator 

 Through the Gaussian speech prior (3.21) and noise likelihood (3.23) models, the 

closed-form solution of the true spectral amplitude estimator ˆ
WCOSHA  using the WCOSH 

cost function (see APPENDIX E for details) in (3.42) is 

 
1 12

1 1
1

13 ;1;
22 2ˆ

1 11 ;1;
2 2 2

S
WCOSH M

i
i

pp F z
A

p pF z

σ

ξ
=

⎛ + ⎞⎛ ⎞⎛ ⎞⎛ ⎞ − −Γ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎛ ⎞ ⎛ − ⎞⎜ ⎟ ⎛ ⎞+Γ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑
, (3.44) 

where z  is defined exactly as in (3.29) and ( )Γ •  and ( )1 1 ; ;F • • •  denote the gamma and 

confluent hypergeometric functions equivalently to (3.43) with free parameter 

1WCOSHp > − . In the case of 1M = , (3.44) is simply the single channel noise reduction 

filter [12]. 

3.5. Spectral Phase Estimation 

 Besides deriving the MMSE spectral amplitude estimators, the MMSE spectral 

phase estimator must be derived to construct the enhanced signal. As shown for the 

MMSE single channel spectral phase estimator in [5], the MMSE estimation of the 

complex exponential estimator ˆje α  results in a non-unity modulus, which produces an 

altered and a non-optimal estimate of the spectral amplitudes. In order to prevent the 

optimal spectral phase estimator from affecting the optimal spectral amplitude estimates, 
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the approach taken in this work is the same constrained optimization formulation from 

[5] given as 

 ˆ

2ˆ

ˆ

min

subject to 1

j

j j

e

j

E e e

e

α

α α

α

⎡ ⎤−⎢ ⎥⎣ ⎦

=
, (3.45) 

where the magnitude of the complex exponential is constrained to have unity modulus. 

Through the Lagrange Multiplier optimization method, (3.45) is reformulated as 

 
( )2

1,
min ,..., 1

subject to 1

j
Mg

E e g Y Y g

g

α

ρ
ρ⎡ ⎤− + −⎢ ⎥⎣ ⎦

=
 (3.46) 

with 

 ˆj
R Ig e g jgα= = +  (3.47) 

and ρ  serving as the Lagrange multiplier. 

3.5.1. Spectral Phase Estimator 

 Under the formulation in (3.46), the constrained MMSE solution is 

 1ˆ tan I

R

g
g

α − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (3.48) 

From (3.46), the key relationship between the real and imaginary components in (3.47) is 

 1

1

sin ,...,

cos ,...,
MI

R M

E Y Yg
g E Y Y

α

α

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

. (3.49) 
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By solving and simplifying (3.49) with the attenuation spectral amplitude i iA c A=  and 

attenuated spectral variance 2 2 2
iS i Scσ σ= , the final form of the spectral phase estimator in 

(3.48) (see APPENDIX F for details) is 
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⎝ ⎠

∑

∑
, (3.50) 

which is a weighted sum of the noisy microphone observations iY  [33]. As with the 

spectral amplitude estimators, the spectral phase estimator simplifies to the well-known 

estimator [5] for the case of 1M = , the single channel noisy spectral phase. 

3.6. Complex Real and Imaginary Spectral Component Estimation 

 In contrast to MMSE estimation of the spectral amplitude (3.30) or spectral phase 

(3.50), the alternative approach is the MMSE estimation of the real and imaginary 

spectral components of the true source spectrum ,R IS . As an overview, Figure 3-6 

illustrates the distributed microphone speech enhancement estimator for noise reduction 

through the utilization of all M  noisy microphone signals. 
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Figure 3-6 Distributed Microphone Complex Real and Imaginary Spectral Component 
Speech Enhancement System 

The goal is to determine the best estimate of the clean source signal real RS  and 

imaginary IS  spectral components, which are compactly written as ,R IS . 

 As with the previous estimators, Gaussian models are assumed for both the 

speech prior 



CHAPTER 3 THEORETICAL METHODS 92 
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 (3.51) 

and noise likelihood 
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where 2
Sσ  and 2

iNσ  are the speech and noise spectral variances. Based on the assumption 

of a diffuse noise field [7] for distributed microphones, the spectral noise components are 

uncorrelated as 
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. (3.53) 

Through the statistical models for the speech prior (3.51) and noise likelihood (3.53), the 

MMSE estimate of the real and imaginary spectral components of the clean spectral 

source ,R IS  is 
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∫

, (3.54) 

which simply involves a single integration over the real RS  or imaginary IS  spectral 

components rather than a double integration over both the clean source signal spectral 

amplitude A  and spectral phase α . 
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3.6.1. Gaussian Noise-Gaussian Speech Spectral Component Estimator 

 From the Gaussian statistical models for both the speech prior (3.51) and noise 

likelihood (3.53), the closed-form solution (see APPENDIX G for details) for ,
ˆ

R IS  is 
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=
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+

∑

∑
, (3.55) 

which is applied to the real and imaginary spectral components of the noisy observation 

signals for distributed microphones. As with the spectral amplitude estimators, (3.55) is 

simply a weighted SNR sum of the noisy observations ( ), ,i R IY  and normalized by the sum 

of the a priori SNR iξ . For the case of 1M = , (3.55) simplifies as 

 , ,
ˆ

1R I R IS Yξ
ξ

=
+

 (3.56) 

or 
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, (3.57) 

which is the single channel noise reduction Wiener filter as given in [13]. 

3.7. Summary 

 In this chapter, the time domain and frequency domain estimators are derived for 

distributed microphone speech enhancement. For the various spectral amplitude 

estimators, the spectral phase estimator is a fundamental element in estimating the true 

clean source signal. In comparison to distributed microphones, the methods derived here 
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would also apply to directional microphones for an ambient noise field without violation 

of any of the assumptions; however, the SNR quantities would not be a function of 

physical distance and would need to employ a different method for estimation.
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CHAPTER 4 EXPERIMENTAL WORK 

 In this chapter, experimental results are presented using the derived statistical 

estimators for distributed microphone speech enhancement. Overall, there are four basic 

sets of experiments: enhancement, spectral phase estimation, time alignment, and 

attenuation factor estimation. 

 First, in the enhancement experiments, SSNR improvement is measured by 

increasing the number of microphones with four input SNR levels and three attenuation 

factor configurations in terms of the various estimators: time domain, spectral amplitude 

with spectral phase, perceptually-motivated spectral amplitude with spectral phase, and 

complex real and imaginary spectral component. Fundamentally, the goal is to illustrate 

that the frequency domain estimators are able to obtain gains in SSNR improvement with 

an increase in the number of microphones as well as over the simple time domain 

estimators. 

 Second, in the spectral phase estimation experiments, SSNR improvement is 

measured for the STSA and LSA with spectral phase estimators. In essence, the aim is to 

illustrate the benefit of the newly derived spectral phase estimator over the standard 

single channel spectral phase estimator. 

 Third, in the time alignment experiments, the noisy observations are first 

artificially misaligned by a random number of samples and then processed using the LSA 

estimator with spectral phase estimator. The purpose is to illustrate the effects on SSNR 

improvement of operating on unsynchronized frames and then determine whether a 
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simple cross-correlation technique can compensate for the misalignment and prevent 

deterioration in the enhancement results. 

 Fourth, in the attenuation factor experiments, the attenuation factors are given 

artificial random error and processed using the LSA estimator with spectral phase 

estimator. The objective is to determine the effects the misestimation of the attenuation 

factors has on SSNR improvements. 

 Based on the results, the statistical time domain and frequency domain estimators 

show SSNR improvements for increasing number of microphones and are robust with 

respect to time misalignment and attenuation factor, particularly with the inclusion of the 

spectral phase estimator. 

4.1. Overview 

 The description of the experiments and implementation along with the 

experimental results are presented for distributed microphone speech enhancement using 

simulated data. 

4.2. Experiments and Implementation 

4.2.1. Enhancement 

 To evaluate the proposed optimal estimators, enhancement experiments were 

implemented using simulated distributed microphone data. Clean speech was taken from 

the TIMIT [34] corpus and corrupted by uncorrelated additive stationary zero mean, unity 

variance white Gaussian noise with input SNR levels range from -20 dB to 10 dB at 
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increments of 10 dB for 1 to 32 microphones. Table 4-1 shows the three different 

attenuation factor configurations, where M  and i  represent the total number of 

microphones and particular microphone. 

Attenuation Factors Value 

Unity 1ic =  

Linear 
1

i
M ic

M
− +

=  

Logarithmic 
( )

( )

10

10

12: 1:0 0 log
10,log

1

10

M
m

M floor M

ic

⎡ ⎤⎛ ⎞⎛ ⎞− − −⎢ ⎥⎜ ⎟⎜ ⎟
⎛ ⎞ ⎝ ⎠⎝ ⎠⎢ ⎥+⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦=  

Table 4-1 Attenuation Factors 

To provide an objective measure of the performance, the SSNR metric was used for 

evaluation, not the SNR metric since it provided very similar overall trends (see 

APPENDIX H for all supplementary experimental results). 

 For each of the simulated noisy microphone observations iY , the analysis 

conditions were frames of 256 samples (25.6 ms) with 50% overlap between the 

corresponding frames using Hanning windows. Noise estimation in either the time 

domain or frequency domain was performed on an initial silence of 5 frames without any 

subsequent updating of the time series or spectrum. The DD [5] smoothing approach was 

utilized to recursively-estimate the a priori SNR as 
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c P
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σ σ σ
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= = = + − −⎡ ⎤⎣ ⎦ , (4.1) 

and the a posteriori SNR was calculated as 
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for each channel with 0.98SNRα =  using thresholds of 
25
10

min 10ξ
−

=  and max 40γ =  

(implemented as a floor on 2
iNσ ). By utilizing (4.1) and (4.2) in the four different 

frequency domain estimators, the spectral amplitude with spectral phase or complex real 

and imaginary spectral components can be properly estimated for each frame. Based on 

the estimation, the true source signal estimate ( )ŝ t  was reconstructed through the 

overlap-add technique. In contrast, the time domain estimator simply involves estimating 

the noise variance from the initial 5 frames of silence and calculating the noisy variance 

before determining the weights iw  of the noisy observation iy . Ultimately, the results are 

evaluated using the SSNR measure for the enhancement, spectral phase estimation, time 

alignment error, and attenuation factor estimation experiments. 

 For the upcoming enhancement experiments, the reference microphone is defined 

as 1m =  with attenuation factor 1 1c = . Given this formulation, Table 4-2, Table 4-3, 

Table 4-4, Table 4-5, and Table 4-6 show all of the derived estimator equations. 
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Table 4-2 Implementation of the Distributed Microphone Time Domain Estimator 
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Estimator Equation 
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Table 4-3 Implementation of the Distributed Microphone Spectral Amplitude Estimators 

Estimator Equation 
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Table 4-4 Implementation of the Distributed Microphone Perceptually-Motivated 
Spectral Amplitude Estimators 

Estimator Equation 
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Table 4-5 Implementation of the Distributed Microphone Spectral Phase Estimator 
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Estimator Equation 
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Table 4-6 Implementation of the Distributed Microphone Complex Real and Imaginary 
Spectral Component Estimator 

For the remaining attenuation factors, ic  is estimated from the signal variances of the 

noisy observations iy  under the assumed independence of the speech s  and noise in  

using 

 
1 1

2 2 2 2

2 2
ˆ i i i iy n y n

i
s y n

c
σ σ σ σ

σ σ σ

− −
= =

−
, (4.3) 

which is a relative SNR ratio of the particular microphone i  to a reference microphone 

1m = . 

4.2.2. Spectral Phase Estimation 

 Estimation of the true source spectral phase is a central contribution to the 

enhancement of the noisy spectral observations iY . In order to evaluate the efficacy of the 

derived spectral phase estimator α̂ , experiments were run comparing the SSNR using the 

new spectral phase estimator to the standard single channel spectral phase estimator, 

which is simply the noisy spectral phase ϑ of the reference channel 1m = . The 

experiment was implemented for a 32 microphone scenario with unity attenuation factors 
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1ic =  for the STSA and LSA estimators with spectral phase estimator. SSNR was 

computed for the enhanced signals. 

4.2.3. Time Alignment 

 For distributed microphones, time alignment of the channels is a significant pre-

processing requirement for the estimation of the true source signal ( )s t . To implement 

alignment, time delays can be estimated through a variety of methods, which are similar 

to those methods used for TDOA methods for source localization [29]. The method used 

here is to select the particular microphone channel with the largest overall signal power 

as a reference, perform a cross-correlation of the reference against each of the other 

channels, and use the peak lag of the cross-correlation between the two channels as the 

time shift for synchronization. Without proper time alignment, the estimators would 

operate on unsynchronized frames, which would significantly and negatively impact the 

estimation process. 

 To evaluate the impact of artificially added misalignment as well as the 

effectiveness of the selected time alignment method, the noisy spectral observations were 

artificially time shifted by a random number of samples selected from a zero-mean 

Gaussian distribution with variance increasing from 0 to 32 with uniform 0.1 increments. 

The time alignment experiments were implemented for a 32 microphone scenario at 0 dB 

input SNR with unity attenuation factors 1ic =  for the LSA estimator with spectral phase 

estimators. SSNR was determined for the enhanced signals. 
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4.2.4. Attenuation Factor Estimation 

 To determine an estimate of the true source signal ( )s t , the attenuation factors ic  

must be accurately estimated for calculating the a priori SNR iξ . Fundamentally, the 

attenuation factors ic  represent the amplitude reduction between the original acoustic 

clean source signal s  and recorded noisy signals iy  collected at each of the 

corresponding microphones m . They incorporate several physical and experimental 

factors such as environmental conditions, distance to the source, directionality and 

uniformity of the source waveform, and physical relationship between sound pressure 

level and quantized sample levels. If the source is unidirectional with uniform 

environment and known air pressure quantization level, then atmospheric models [35] 

and source localization can be exploited to directly estimate the attenuation factors, 

which results in an estimate of the true sound pressure level at the source. In most cases, 

estimation from physical and experimental factors will not be feasible or accurate and the 

relative attenuation factor ratios between signals can be estimated directly from ratios of 

noisy signal energies, which leaves only a single degree of freedom. Thus, the value of 

attenuation factors can be determined by assuming a known ic  at any arbitrary reference 

microphone. 

 The impact of artificial error to the attenuation factor on overall enhancement was 

evaluated by adding random error selected from a zero-mean Gaussian distribution with 

variance ranging from 0 to 2 in unequal increments to the true constant attenuation 

factors 1ic =  prior to enhancement. As a flooring mechanism, errors that resulted in 



CHAPTER 4 EXPERIMENTAL WORK 103 

attenuation factors ic  of less than 0 were discarded and randomly re-generated again. The 

attenuation factor experiments were implemented for a 32 microphone scenario at 0 dB 

input SNR for the LSA estimator with spectral phase estimator. SSNR was calculated for 

the enhanced signals. 

4.3. Experimental Results 

 The experimental results for enhancement, spectral phase estimation, time 

alignment, and attenuation factor estimation are given for the various distributed 

microphone speech enhancement estimators. 

4.3.1. Enhancement 

4.3.1.1. Time Domain 

 Based on an average of 10 trial runs of the same sentence, results of the 

simulations for unity (Figure 4-1), linear (Figure 4-2), and logarithmic (Figure 4-3) 

attenuation factors are shown as a function of increasing number of microphones. 
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Figure 4-1 SSNR Improvements for Time Domain Estimation (Unity Attenuation 
Factors) 
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Figure 4-2 SSNR Improvements for Time Domain Estimation (Linear Attenuation 
Factors) 
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Figure 4-3 SSNR Improvements for Time Domain Estimation (Logarithmic Attenuation 
Factors) 
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Figure 4-4 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Time Domain Estimation (Unity Attenuation Factors, 0 dB Input 

SNR, 32 Microphones) 
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4.3.1.2. Spectral Amplitude and Spectral Phase 

 The results of the simulations for the STSA and LSA estimators with spectral 

phase estimator were averaged over 10 trial runs of the same sentence and are shown for 

unity (Figure 4-5), linear (Figure 4-6), and logarithmic (Figure 4-7) attenuation factors as 

a function of increasing number of microphone channels. 

 

Figure 4-5 SSNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Unity Attenuation 

Factors) 
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Figure 4-6 SSNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Linear 

Attenuation Factors) 
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Figure 4-7 SSNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Logarithmic 

Attenuation Factors) 
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spectral phase estimator produced 2 dB SSNR improvement to 18 dB at -20 dB input 

SNR (unity attenuation factor), 1-3 dB SSNR improvement (linear attenuation factor), 

and 2 dB SSNR improvement (logarithmic attenuation factor) over the STSA estimator 

with spectral phase estimator. In comparison to the attenuation factor cases in Figure 4-1, 

Figure 4-2, and Figure 4-3, the STSA and LSA estimators with spectral phase estimator 

yielded results that were slightly better than the time domain estimator by approximately 

1-3 dB for Gaussian white noise. Figure 4-8 and Figure 4-9 show the time-series and 

spectrograms for the true source signal, noisy signal, and true source signal estimate. 

 

Figure 4-8 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Spectral Amplitude (STSA) Estimation with Spectral Phase 

Estimation (Unity Attenuation Factors, 0 dB Input SNR, 32 Microphones) 

0 1 2 3
-0.1

0

0.1

Time

A
m

pl
itu

de

Clean Signal

0 1 2 3
-0.1

0

0.1

Time

A
m

pl
itu

de

Noisy Signal

0 1 2 3
-0.1

0

0.1

Time

A
m

pl
itu

de

Clean Signal Estimate

Time

Fr
eq

ue
nc

y
Clean Signal

0.5 1 1.5 2 2.5
0

2000
4000
6000
8000

Time

Fr
eq

ue
nc

y

Noisy Signal

0.5 1 1.5 2 2.5
0

2000
4000
6000
8000

Time

Fr
eq

ue
nc

y

Clean Signal Estimate

0.5 1 1.5 2 2.5
0

2000
4000
6000
8000



CHAPTER 4 EXPERIMENTAL WORK 112 

 

Figure 4-9 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Log-Spectral Amplitude (LSA) Estimation with Spectral Phase 

Estimation (Unity Attenuation Factors, 0 dB Input SNR, 32 Microphones) 
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estimator, the STSA estimator with spectral phase estimator reduced more of the 

background noise than the LSA estimator with spectral phase estimator. Ultimately, the 

STSA and LSA estimators with spectral phase estimator are frequency domain 

enhancement methods that show significant SSNR improvements over the simple time 

domain enhancement method. 

4.3.1.3. Perceptually-Motivated Spectral Amplitude and Spectral Phase 

 The simulation results for the WE and WCOSH estimators with spectral phase 

estimator are shown for 1 trial run in Figure 4-10, Figure 4-11, and Figure 4-12 and 

Figure 4-13, Figure 4-14, and Figure 4-15 as a function of the number of microphones 

and different attenuation factors. 
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Figure 4-10 SSNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Unity Attenuation Factors) 
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Figure 4-11 SSNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Linear Attenuation Factors) 
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Figure 4-12 SSNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Logarithmic Attenuation Factors) 
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Figure 4-13 SSNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Unity Attenuation Factors) 
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Figure 4-14 SSNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Linear Attenuation Factors) 
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Figure 4-15 SSNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Logarithmic Attenuation Factors) 
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Figure 4-16 and Figure 4-17 show the time-series and spectrograms for the true source 

signal, noisy signal, and true source signal estimate. 

 

Figure 4-16 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Weighted Euclidean (WE) Spectral Amplitude Estimation with 

Spectral Phase Estimation (Unity Attenuation Factors, 0 dB Input SNR, 32 Microphones) 
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Figure 4-17 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Weighted Cosh (WCOSH) Spectral Amplitude Estimation with 

Spectral Phase Estimation (Unity Attenuation Factors, 0 dB Input SNR, 32 Microphones) 
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estimators with spectral phase estimator provided even better enhancement results than 

the STSA and LSA estimators with spectral phase estimator. 

4.3.1.4. Complex Real and Imaginary Component 

 The simulation results of 10 trial runs of the same sentence are shown for unity 

(Figure 4-18), linear (Figure 4-19), and logarithmic (Figure 4-20) attenuation factors as a 

function of increasing number of microphones. 

 

Figure 4-18 SSNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Unity Attenuation Factors) 
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Figure 4-19 SSNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Linear Attenuation Factors) 
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Figure 4-20 SSNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Logarithmic Attenuation Factors) 
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4-21 show the time-series and spectrograms for the true source signal, noisy signal, and 

true source signal estimate. 

 

Figure 4-21 Time-Series and Spectrograms of Clean Signal, Noisy Signal, and Clean 
Signal Estimate for Complex Real and Imaginary Spectral Component Estimation (Unity 

Attenuation Factors, 0 dB Input SNR, 32 Microphones) 
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general, the complex real and imaginary spectral component estimator produced 

comparable SSNR improvement results and spectrograms to the STSA and LSA 

estimators with spectral phase estimator. 

4.3.2. Spectral Phase Estimation 

 To demonstrate the benefit of the derived multichannel spectral phase estimator, 

simulations were performed and averaged over 10 trial runs of the same sentence using 

the multichannel STSA and multichannel LSA estimators with multichannel spectral 

phase estimator with unity attenuation factors. Results are illustrated in Figure 4-22, 

which show the SSNR improvement difference between the optimal multichannel 

spectral phase estimator and optimal single channel (noisy) spectral phase estimator. 
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Figure 4-22 SSNR Improvement Difference between Multichannel Short-Time Spectral 
Amplitude (STSA) and Multichannel Log-Spectral Amplitude (LSA) Estimation with 

Multichannel Spectral Phase Estimation and Single Channel Short-Time Spectral 
Amplitude (STSA) and Single Channel Log-Spectral Amplitude (LSA) Estimation with 

Single Channel (Noisy) Spectral Phase Estimation (Unity Attenuation Factors) 
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estimator constitutes a significant portion of the overall improvement obtained when 

using all of the available acoustic and spatial information from the noisy observations iY  

in the surrounding environment. 

4.3.3. Time Alignment 

 Figure 4-23 illustrates the effects of artificial misalignment and corresponding 

automatic time alignment of a 32 channel configuration for the LSA estimator with 

spectral phase estimator using unity attenuation factors and 0 dB input SNR noisy 

signals. 
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Figure 4-23 SSNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation Before and After Artificial Time Misalignment Compensation 

The degree of SSNR improvement is shown as a function of the amount of artificial 

misalignment measured by MSE. Enhancement decreased rapidly with an artificial 

misalignment of only 1 sample2. With an artificial misalignment of only 18 samples2, the 

SSNR improvements fell to already below the single channel LSA estimator with single 

channel spectral estimator of 10.42 dB. Consequently, the benefit of addition 

microphones vanishes for even a relatively small amount of artificial misalignment. It is 

clear that the success of the estimation relies directly on the ability to accurately time 

align the noisy signals iy . The cross-correlation compensation method performed well 
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for time alignment with overall enhancement remaining steady at approximately 15.5 dB 

for artificial misalignment upwards of 25 samples2, which is only slightly less than a 1 dB 

degradation in the results from perfect time alignment. Even after the cross-correlation 

compensation, the average remaining artificial misalignment was relatively minor for 

three of the four input SNR conditions: 2.9x107 samples2 (-20 dB), 16.2 samples2 (-10 

dB), 14.4 samples2 (0 dB), and 14.0 samples2 (10 dB). With no overall trend suggesting a 

performance decrease as a function of initial artificial misalignment, it is possible to 

accurately ascertain time alignment. 

4.3.4. Attenuation Factor Estimation 

 Figure 4-24 depicts the effects on SSNR improvements of the artificial error 

added to the true unity attenuation factors 1ic =  of a 32 channel configuration for the 

LSA estimator with spectral phase estimator and 0 dB input SNR noisy signals. 
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Figure 4-24 SSNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 

The results indicate that misestimation of the unity attenuation factors due to artificially 

added error caused a decrease in overall performance of about 1 dB at 5%-30% MSE. 

The small amounts of misestimation caused by the artificially added error did not have 

substantial impact on enhancement performance since even a wide range of 30%-70% 

MSE caused the overall enhancement to reach a steady 15.0 dB SSNR improvement, 

which is approximately a 1.5 dB decrease in the results with no artificially added error in 

the attenuation factors. Theoretically, the worst-case impact for attenuation factor 

misestimation would occur when a single channel has a dominatingly large attenuation 
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factor, which reduces performance to the single channel estimator applied to that 

particular channel. Without any artificially added error to the unity attenuation factors, 

the actual computed error in the estimated unity attenuation factors was approximately 

2.58% (0 dB input SNR), 30.79% (-20 dB input SNR), 21.59% (-10 dB input SNR), and 

0.24% (10 dB input SNR), which caused only a 1-2 dB degradation in the overall 

enhancement results. Therefore, there is very little performance decrease from 

misestimation of the unity attenuation factors due to any actual error or artificially added 

error. 

4.4. Summary 

 The time domain and frequency domain statistical estimators provided significant 

gains in SSNR improvements with an increase in the number of microphones for 

distributed microphone speech enhancement. In the first set of results, enhancement, the 

frequency domain estimators had better performance than the simple time domain 

estimator. Between the unity, linear, and logarithmic attenuation factors, the unity 

attenuation factors always produced the best overall enhancement from the input SNR 

and varying number of microphones since each of the observations contain equally useful 

information. In contrast, the linear and then logarithmic attenuation factors had slightly 

less SSNR improvement with additional microphones because the single channel results 

had already reached nearly optimal performance. Table 4-7 displays a summary of the 

enhancement results for the various statistical estimators with unity, linear, and 

logarithmic attenuation factors. 
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SSNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 14.89 0.00 10.57 0.00 7.08 

STSA + Estimated 
Phase 8.86 14.94 8.86 11.67 8.86 9.20 

STSA + Noisy 
Phase 8.86 11.20 8.86 9.87 8.86 8.47 

LSA + Estimated 
Phase 10.42 16.35 10.21 13.59 10.13 11.49 

LSA + Noisy Phase 10.28 11.83 10.25 11.21 10.28 10.45 

WE + Estimated 
Phase (p=-1.9) 11.27 18.73 11.31 16.36 11.14 14.38 

WCOSH + 
Estimated Phase 

(p=-0.9) 
10.97 18.44 11.29 16.15 10.91 14.09 

Complex 11.35 16.90 11.15 14.45 11.30 12.37 

Table 4-7 SSNR Improvement (Input SNR/SSNR = 0.0 dB/-7.6 dB) 

Based on the enhancement results, the perceptually-motivated WE spectral amplitude 

estimator with spectral phase estimator outperformed all of the other estimators for the 
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optimal parameter of 1.9p = −  because the estimator emphasized spectral valleys more 

than spectral peaks and had less remaining background noise and better overall speech 

quality. 

 In the second set of results, spectral phase estimation, the derived multichannel 

spectral phase estimator showed significant SSNR improvements over the single channel 

spectral phase estimator. Without the inclusion of the spectral phase estimator, the 

performance decreased linearly from 1 dB at 3% MSE to 3 dB at 7% MSE with SSNR 

improvement below the single channel baseline of 10 dB at 22% MSE. By including the 

multichannel spectral phase estimator, the performance exceeded the single channel 

(noisy) spectral phase estimator by as much as 6.5 dB for the best case of unity 

attenuation factors. Due to the STSA and LSA estimators and WE and WCOSH 

estimators requiring spectral phase information to reconstruct the enhanced signal, the 

multichannel spectral phase estimator was a vital aspect in improving the SSNR results 

with additional microphones since it utilized information about all of the noisy 

microphone observations, not simply information from the best microphone. 

 In the third set of results, time alignment, the performance of the statistical 

estimators seriously deteriorated with unsynchronized frames. For an artificial 

misalignment of simply 20 samples2 with 32 microphones at 0 dB input SNR and unity 

attenuation factors, the enhancement results decreased from 16 dB to 9 dB, which is 

already 1.3 dB lower than the single channel enhancement results. By using cross-

correlation to time align the noisy observations, there was only a reduction of 1 dB in 

SSNR improvement. 
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 In the fourth set of experiments, attenuation factor estimation, the attenuation 

factors were artificially given random error on the known unity attenuation factors for 32 

microphones and 0 dB input SNR. The amount of influence that artificial attenuation 

factor error had in the overall results for 32 microphone channels was negligible for the 0 

dB and 10 dB cases, 1 dB degradation in the -10 dB case, and 3 dB degradation for the -

20 dB case. 

 Overall, the success of the distributed speech enhancement estimators depends 

primarily on the assumption of independence of noise spectral components at each of the 

respective microphones, accurate time alignment of the noisy observations, and 

reasonable estimation of the attenuation factors.
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CHAPTER 5 CONCLUSION 

 In this dissertation, the goal has been to generalize the speech enhancement work 

from single channel microphones, dual channel microphones, and microphone arrays for 

the purposes advancing the current state-of-the-art methods for distributed microphone 

speech enhancement. In order to realize these novel frameworks, the focus has been on 

developing and implementing robust and optimal time domain and frequency domain 

estimators for estimating the true source signal and measuring the SSNR performance 

improvement. By utilizing statistical estimation techniques and Gaussian distributions for 

the speech prior and noise likelihood models, the theoretical methods were derived for 

five basic classes of estimators: time domain, short-time spectral amplitude (STSA) with 

spectral phase, log-spectral amplitude (LSA) with spectral phase, perceptually-motivated 

spectral amplitude with spectral phase, and complex real and imaginary spectral 

component. 

 From the experimental work with different true source signal attenuation factors, 

the estimators all demonstrated significant gains in SSNR with an increase in the number 

of microphones, especially with the inclusion of the optimal multichannel spectral phase 

estimator. The recommendation here would be to use the perceptually-motivated spectral 

amplitude estimators with spectral phase estimator, namely the Weighted Euclidean 

(WE) and Weighted Cosh (WCOSH) estimators for approximately 10-15 microphones to 

offset overhead from the extra microphone costs, computation costs, and CPU time from 

the additional microphones. The statistical estimators have already shown tremendous 

promise with distributed microphone speech enhancement of noisy acoustic signals and 

could potentially be implemented in various consumer, industrial, and military 
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applications under severely noisy environments. Ultimately, the impact of this work is 

that it provides researchers, the general public, and law enforcement and national security 

agencies with methods for enhancing noisy speech collected by distributed microphones 

involving an assortment of target applications such as courtroom and meeting room 

transcriptions, broadcast news transcriptions, and speaker spotting, identification, and 

tracking systems. 

5.1. Summary of Work 

 Optimal estimators have been developed and implemented in both the time 

domain and frequency domain for estimating the true source signal s , spectral amplitude 

A  with spectral phase α , and complex real and imaginary component ,R IS  in a 

distributed microphone scenario. The distributed microphone speech enhancement 

system provided significant gains in SSNR improvements with an increase in the number 

of microphones and was demonstrated to be robust with respect to time alignment and 

estimation of the attenuation factors with corrupting uncorrelated and additive white 

Gaussian noise, particularly with the inclusion of the multichannel spectral phase 

estimator. Overall, the best enhancement results were from the perceptually-motivated 

spectral amplitude estimators with spectral phase frequency domain estimator: weighted 

cosh (WCOSH) and weighted Euclidean (WE). 

5.2. Research Contributions 

 By utilizing statistical estimation techniques, the research has been able to extend 

the single channel microphone, dual channel microphone, and microphone array speech 
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enhancement methods into the distributed microphone scenario with five major classes of 

contributions: 

1. Time Domain Estimation 

2. Spectral Amplitude Estimation 

3. Perceptually-Motivated Spectral Amplitude Estimation 

4. Spectral Phase Estimation 

5. Complex Real and Imaginary Spectral Component Estimation 

Based on the experimental results, the statistical estimators are able to estimate the true 

source signal from noisy observations and improve the quality and intelligibility over the 

best case single channel results, particularly with the inclusion of the optimal 

multichannel spectral phase estimator. 

5.3. Future Work 

 For future work, there are several directions for improving the distributed 

microphone speech enhancement estimators. While the dissertation explored uncorrelated 

and additive Gaussian white noise with estimation of the noise statistics involving simply 

an average of the initial frames of silence, the natural extension would be to utilize 

uncorrelated and additive real world non-Gaussian white noise (e.g., babble) from the 

NOISEX corpus [36] and employ time domain and frequency domain noise tracking 

estimators. It would also be possible to extend other single channel microphone speech 

enhancement estimators such as beta-order [37], alternative perceptually-motivated 

spectral amplitude [12], and additional complex real and imaginary complex [13] 

estimators. Instead of utilizing time-invariant attenuation factors for stationary sources, 
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the distributed microphone model could be modified to include time-variant attenuation 

factors to deal with moving sources in a noisy environment. 

 Besides investigating other speech enhancement statistical estimators, research 

needs to be invested towards developing and implementing novel algorithms with 

distributed microphones for robust and optimal speech recognition. There are numerous 

state-of-the-art methods for single channel feature enhancement [38-40], feature 

compensation [41], and model adaptation [42], but there are not yet any corresponding 

methods for distributed microphones. Table 5-1 shows the state-of-the-art methods for 

speech enhancement with the newly derived estimators from this work along with the 

state-of-the-art methods for speech recognition. 
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Method 
Single 

Channel 
Microphones 

Dual Channel 
Microphones 

Microphone 
Arrays 

Distributed 
Microphones 

Speech 
Enhancement 

Spectral 
Subtraction [9] 

Adaptive Noise 
Cancellation [2]

Fixed 
Beamforming 

[3] 

Time Domain 

Wiener Filter 
[11] 

Wiener Filter 
[10] 

Short-Time 
Spectral 

Amplitude 
Estimation [5] 

Short-Time 
Spectral 

Amplitude 
Estimation [7] 

Log-Spectral 
Amplitude 

Estimation [6] 

Adaptive 
Beamforming 

[3] 

Log-Spectral 
Amplitude 
Estimation 

Perceptually-
Motivated 
Spectral 

Amplitude 
Estimation [12] 

Perceptually-
Motivated 
Spectral 

Amplitude 
Estimation 

Complex Real 
and Imaginary 

Spectral 
Component 

Estimation [13] 

Complex Real 
and Imaginary 

Spectral 
Component 
Estimation 

Feature 
Enhancement 

Filterbanks 

[38, 39] None 

LIMABEAM 
[43] 

None 

Cepstrals [40] S-LIMABEAM 
[44] 

Feature 
Compensation CSM [41] None None None 

Model 
Adaptation 

Phase-
JAC/VTS [42] None None None 

Table 5-1 Standard Methods for Single Channel, Dual Channel Microphones, 
Microphone Arrays, and Distributed Microphone Speech Enhancement and Feature 

Enhancement, Feature Compensation, and Model Adaptation for Speech Recognition 
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In the next stage, the research work with distributed microphone will involve formulation 

and derivation of statistical estimation solutions in the feature domain (e.g., filterbank 

domain, cepstral domain) with innovative noise tracking algorithms for increasing the 

recognition accuracy of the estimated true source signal. Ultimately, the corresponding 

estimators will then be implemented and compared to the state-of-the-art single channel 

speech recognition estimators to determine the benefit of using additional microphones 

on recognition accuracy.
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APPENDIX A TIME DOMAIN ESTIMATOR 

 In this appendix, the minimum mean-square error time domain estimator is 

derived for distributed multichannel signals. To facilitate construction of the estimator ŝ , 

the mean 
is

μ  is computed for each microphone i  from (3.11). Since the exponent term 

inside the exponential is quadratic in nature, (3.11) is still a valid Gaussian distribution. 

Through the expansion of the exponential term and collecting the square 2s , linear s , 

and C  constant terms, the summation term in (3.11) is rewritten as 
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and 
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In order to write the summation in (A.1) as a single term ( )2
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, the mathematical 
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By substituting (A.3) and (A.4) in (A.6), the closed-form solution ŝ  is given in (3.19) as 
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APPENDIX B SHORT-TIME SPECTRAL AMPLITUDE ESTIMATOR 

 In this appendix, the minimum mean-square error short-time spectral amplitude 

estimator is derived for distributed multichannel signals. After substitution of the 

statistical models in (3.21) and (3.23), the result from (3.24) is 
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⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫ ∫

∑∫ ∫

. (B.1) 

The integration over the spectral phase α  is performed by expansion of the term 

( ) ( )2 22j j j
i i i i i iR I

Y c Ae Y c Ae Y c Aeα α α− = − + −  and extracting the constants from the 

integral as 

 

( )

2
2

2
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2 2 2 2

2
1 0

exp

exp exp cos sin

i

i

jM
i i

i N

M
i i

i N

Y c Ae
d

Y c A
a b d

απ

π

α
σ

α α α
σ

=

=

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠
⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∑∫

∑ ∫

, (B.2) 

where 

 ( )2
1

2
Re

i

M
i

i
i N

c A
a Y

σ=

= ∑  (B.3) 

and 

 ( )2
1

2
Im

i

M
i

i
i N

c A
b Y

σ=

= ∑ . (B.4) 
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From trigonometric identities, the sum of cosine and sine terms with different amplitudes 

and the same phase is written as 

 2 2cos sin cos arctan ba b a b
a

α α α⎛ ⎞⎛ ⎞+ = + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (B.5) 

where 

 2 2
2

1

2
i

M
i i

i N

c Y
a b A

σ=

+ = ∑ . (B.6) 

Since the integral in (B.2) for the spectral phase α  is over one full period, the spectral 

phase shift of arctan b
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is removed from (B.5). By means of equation 8.431.1 in [25], 

the integral in (B.2) is rewritten as 

 ( )
2

0 2
10

exp cos sin 2 2
i

M
i i

i N

c Y
a b d I A

π

α α α π
σ=

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟
⎝ ⎠

∑∫ , (B.7) 

which reduces (B.1) to 

 

2 2
0 2

10

2
0 2

10

1exp 2
ˆ

1exp 2

i

i

M
i i

i N

STSA
M

i i

i N

c Y
A A I A dA

A
c Y

A A I A dA

λ σ

λ σ

∞

=

∞

=

⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫

∑∫
. (B.8) 

Through substitution of equations 8.406.3 and 6.631.1 in [26] and [25], the closed-form 

solution ˆ
STSAA  is given in (3.25) as 
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( )

( )
1 1

1
1 12

3 ;1;1.5 2ˆ
1;1;1

STSA

F v
A

F v

λ

⎛ ⎞
⎜ ⎟Γ ⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (B.9)
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APPENDIX C LOG-SPECTRAL AMPLITUDE ESTIMATOR 

 In this appendix, the minimum mean-square error log-spectral amplitude 

estimator is derived for distributed multichannel signals. After substitution of (3.21) and 

(3.23), (3.33) is expressed as 

 ( )
1

2
22

1
2 2

10 0

,..., 2
22

2 2
10 0

exp exp

exp exp

i

M

i

jM
i i

iS N

Z Y Y
jM

i i

iS N

Y c AeAA d dA

Y c AeAA d dA

απ
μ

απ

α
σ σ

μ

α
σ σ

∞
+

=

∞

=

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Φ =
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫ ∫

∑∫ ∫

. (C.1) 

The integration over the spectral phase α  is performed exactly as in APPENDIX B. By 

employing (B.2)-(B.7) from APPENDIX B, (C.1) is written as 

 ( )
1

1 2
0 2

10

,...,

2
0 2

10

1exp 2

1exp 2

i

M

i

M
i i

i N

Z Y Y
M

i i

i N

c Y
A A I A dA

c Y
A A I A dA

μ

λ σ
μ

λ σ

∞
+

=

∞

=

⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Φ =
⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫

∑∫
. (C.2) 

Through application of equations 8.406.3 and 6.631.1 in [26] and [25], the closed-form 

solution ( )
1 ,..., MZ Y Y μΦ  is established in (3.34) as 

 ( )
1 1 1,...,

2

1
2 ;1;

21
MZ Y Y F vμ

μ
μμ

λ

⎛ ⎞Γ +⎜ ⎟ ⎛ ⎞⎝ ⎠Φ = − −⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

. (C.3) 

 The differentiation of (3.34) with respect to μ  results in three derivative terms 

that are written as 
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d F v
d
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μ
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μ

μ

μ
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μ μ
μ

λ

μ μ
μ

λ

μ
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=

=

=

⎡ ⎤⎡ ⎤ = Φ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞= Γ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞+ Γ + − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞+ Γ +⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎝ ⎠

1 1
2

0

;1;
2

d F v
d

μ

μ
μ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥
⎣ ⎦

 (C.4) 

and evaluated at 0μ = . The derivative of the first term is evaluated exactly as in [6] 

using 

 1 1 ln 1
2 2 2

d d
d d

μ μ μ
μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + = Γ + Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
. (C.5) 

Through the series expansion given by equation 8.342.1 in [26], the last term in (C.5) is 

rewritten as 

 ( )
2

ln 1
2 2 2

r

rr
i

c
r
μμ μ α

∞

=

−⎛ ⎞⎛ ⎞Γ + = − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , (C.6) 

where 2μ < , c  is Euler’s constant, and 

 
1

1
r r

n n
α

∞

=
∑ . (C.7) 
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By differentiating (C.6) term-by-term and evaluating (C.5) at 0μ = , the derivative of the 

first term in (C.4) is given as 

 
0

1
2 2

d c
d

μ

μ
μ

=

⎡ ⎤⎛ ⎞Γ + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (C.8) 

The derivative of the second term 
21
μ

λ

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 in (C.4) is computed in a straightforward 

manner by rewriting it in exponential form and evaluating at 0μ =  as 

 
( )

( )
1 ln
2

2 0

0

1 1 ln
21

d d e
d d

μ λ

μ

μ

μ

λ
μ μ

λ
=

=

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
= =⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (C.9) 

For the computation of the third term, the confluent hypergeometric function 

1 1 ;1;
2

F vμ⎛ ⎞− −⎜ ⎟
⎝ ⎠

 is differentiated through its series expansion from equation 9.210.1 in 

[25] as 

 ( ) ( )
( )1 1

0
; ;

!

r
r

r r

a xF a b x
c r

∞

=

= ∑ , (C.10) 

where ( ) ( ) ( )1 1 ... 1
r

a a a a r= ⋅ ⋅ + ⋅ ⋅ + −  with ( )0
1a . By differentiating (C.10) term-by-

term and evaluating at 0μ = , the derivative is given as 

 
( )

1 1
10

1 1;1;
2 2 !

r

r

vd F v
d r r

μ

μ
μ

∞

==

−⎡ ⎤⎛ ⎞− − = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ . (C.11) 

By combining the three derivative results in (C.8), (C.9), and (C.11), (C.4) reduces to 
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⎢ ⎥⎣ ⎦

∑

∑

, (C.12) 

where ( )1 1 0;1; 1F v− = . From equations 8.211.1 and 8.214.1 in [26], (C.12) is rewritten as 

 
( ) ( )

( )

1
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2 2
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t
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eE Z Y Y dt v
t

e dt v
t
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λ

∞ −

∞ −

⎡ ⎤
⎡ ⎤ = − − − +⎢ ⎥⎣ ⎦

⎣ ⎦
⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟
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∫

∫
. (C.13) 

Consequently, the final closed-form solution of ˆ
LSAA  after exponentiation is written as in 

(3.36) as 

 

1
2

1ˆ exp
1 2

t

LSA
v

v eA dt
t

λ

∞ −
⎛ ⎞
⎜ ⎟ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

∫ . (C.14)
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APPENDIX D WE SPECTRAL AMPLITUDE ESTIMATOR 

 In this appendix, the perceptually-motivated weighted Euclidean (WE) spectral 

amplitude estimator is derived for distributed multichannel signals. By substitution of the 

statistical models in (3.21) and (3.23), (3.41) is written as 

 

2
22

2
2 2

10 0

2
22

1
2 2

10 0

exp exp

ˆ

exp exp

i
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jM
i ip

iS N

WE
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i ip
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α
σ σ

α
σ σ

∞
+

=

∞
+

=

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫ ∫

∑∫ ∫

. (D.1) 

As in APPENDIX B, the spectral phase α  is integrated out from the both of the inner 

integrals as 

 

2 2
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1 2
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1exp 2
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1exp 2
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p i i
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M

p i i

i N

c Y
A A I A dA

A
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A A I A dA

λ σ

λ σ

∞
+

=

∞
+

=

⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫

∑∫
, (D.2) 

where 1
λ

 is defined in (3.26). By utilizing 8.406.3 and 6.631.1 in [26] and [25], (D.2) is 

given in terms of the gamma function ( )Γ • and confluent hypergeometric function 

( )1 1 ; ;F • • •  described by 9.210 in [25] as 

 
1 1

1
2

1 1

3 3 ;1;
12 2 2ˆ

211 ;1;
2 2

WE

p pF z
A

p pF z
λ

+⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

+⎛ ⎞ ⎛ ⎞Γ + ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, (D.3) 

where 
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⎜ ⎟+⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑
 (D.4) 

with 2 2 2
iS i Scσ σ= . From (D.3) and (D.4), the final closed-form solution ˆ

WEA  is given in 

(3.43) as 
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1 12

1 1
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13 ;1;
22 2ˆ

11 ;1;
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i
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pp F z
A
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σ
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⎛ ⎞ ⎛ ⎞⎜ ⎟+Γ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑
 (D.5) 

with free parameter 2WEp > .
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APPENDIX E WCOSH SPECTRAL AMPLITUDE ESTIMATOR 

 In this appendix, the perceptually-motivated weighted cosh (WCOSH) spectral 

amplitude estimator is derived for distributed multichannel signals. From substitution of 

the statistical models in (3.21) and (3.23), (3.44) is written as 
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2 2
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2

2
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exp exp
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⎛ ⎞−⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫ ∫

∑∫ ∫

. (E.1) 

After integrating out the spectral phase α  from the both of the inner integrals as in 

APPENDIX B, (E.1) is given as 
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2
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ˆ
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i

i

M
p i i

i N

WCOSH
M

p i i

i N

c Y
A A I A dA

A
c Y

A A I A dA

λ σ

λ σ

∞
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⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∫

∑∫
, (E.2) 

where 1
λ

 is defined in (3.26). Through 8.406.3 and 6.631.1 in [26] and [25], (E.2) is 

given in terms of the gamma function ( )Γ • and confluent hypergeometric function 

( )1 1 ; ;F • • •  described by 9.210 in [25] as 

 
1 1

2

1 1

3 3 ;1;
12 2 2ˆ
11 1;1;

2 2 2
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p pF z
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, (E.3) 

where 
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=
+∑

 (E.4) 

using 2 2 2
iS i Scσ σ= . As a result of (E.3) and (E.4), the closed-form solution of ˆ

WCOSHA  is 

given in (3.44) as 
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∑
 (E.5) 

with free parameter 1WCOSHp > − .



APPENDIX F SPECTRAL PHASE ESTIMATOR 158 

APPENDIX F SPECTRAL PHASE ESTIMATOR 

 In this appendix, the minimum mean-square error spectral phase estimator is 

derived for distributed multichannel signals. After expanding the terms in the expectation 

with Euler’s identity conditioned on the noisy spectral coefficients { }1,..., MY Y , (3.46) is 

rewritten as 

 

( )

( )

( ) ( )

2

1,

2
1,

1
2 2 2 2

1

min ,..., 1

min cos ,...,

sin ,...,

j
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α

α ρ ρ

⎡ ⎤− + −⎢ ⎥⎣ ⎦
⎡ ⎤= −⎣ ⎦

⎡ ⎤+ − + + −⎣ ⎦

, (F.1) 

which requires computation of the partial derivatives 
[ ]( )

0
E
ρ

∂ •
=

∂
, 

[ ]( )
0

R

E
g

∂ •
=

∂
, and 

[ ]( )
0

I

E
g

∂ •
=

∂
. The partial derivatives with respect to Rg  and Ig  are computed to find the 

solutions of 
[ ]( )

0
R

E
g

∂ •
=

∂
 and 

[ ]( )
0

I

E
g

∂ •
=

∂
 as 

 ( ) 12 2 cos ,...,R Mg E Y Yρ α+ = ⎡ ⎤⎣ ⎦  (F.2) 

and 

 ( ) 12 2 sin ,...,I Mg E Y Yρ α+ = ⎡ ⎤⎣ ⎦ . (F.3) 

The fundamental relationship between the real and imaginary components is given in 

(3.49) with 
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and 
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, (F.5) 

which closely resemble the integration performed in (3.24) and (3.31) but with different 

arguments in the expectation operators. After substituting the statistical models for the 

speech prior (3.21) and noise likelihood (3.23), (F.4) and (F.5) are rewritten as 
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and 
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. (F.7) 

By utilizing (B.2) from APPENDIX B, the inner integral over the spectral phase α  in 

(F.6) is expanded as 
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Through (B.5) from APPENDIX B, the integral over the spectral phase α  in (F.8) is 

further rewritten as 

 ( ) ( )
2 2

0 0

cos exp cos sin cos cosa b d d
π π

α α α α α α ψ α+ = −∫ ∫ , (F.9) 

where 

 1tan b
a

ψ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (F.10) 

and a , b , and 2 2a b+  are given in (B.3), (B.4), and (B.6) from APPENDIX B. By 

using the product-to-sum cosine trigonometric identity, (F.9) simplifies to 
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since the spectral phase shift of ψ  in the second integral over the spectral phase α  in 

(F.11) is irrelevant for the limits of integration. From (B.2) in APPENDIX B and (F.11), 

(F.8) is written as 
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In a similar manner, the inner integral over the spectral phase α  in (F.7) is given by 
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where 
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Through (F.12) and (F.13), the expectations in (F.6) and (F.7) are written as 
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and 
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 (F.16) 

with 1
λ

 given by (3.26). By utilizing the expectations from (F.15) and (F.16) and 

employing the definitions (F.10) and (F.14), the closed-form solution of α̂  from (3.50) is 

written as 
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where a  and b  are specified in (B.3) and (B.4) from APPENDIX B. Through 

simplification of the ratio b
a

 using i iA c A=  and 2 2 2
iS i Scσ σ= , the final closed-form 

solution of α̂  in (F.17) is given in (3.50) as 
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APPENDIX G COMPLEX RE/IM SPECTRAL COMP ESTIMATOR 

 In this appendix, the minimum mean-square error complex real and imaginary 

spectral component estimator is derived for distributed multichannel signals using 

Gaussian noise and Gaussian speech statistical models. After substitution of (3.51) and 

(3.53), (3.54) is written as 
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where 
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By splitting the integral in both the numerator and denominator in (G.2) each into two 

separate integrals and utilizing the relationship 3.462.1 in [25], 
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where ( )D• •  is the parabolic cylinder function defined by 9.240 in [25]. With (G.4) and 

(G.5), (G.2) is rewritten as 
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with 2 2 2
iS i Scσ σ= . The arguments to the parabolic cylinder functions are simplified to 
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iS i Scσ σ=  and defined as 
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using the same notation as in [13]. Through the substitution of (G.7) and (G.9), (G.6) is 

rewritten as 
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By simplifying the ratio of parabolic cylinder functions in (G.10), the ratio is now given 

as 
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Thus, the final closed-form solution ,
ˆ

R IS  is given as in (3.55) as 
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APPENDIX H SUPPLEMENTARY EXPERIMENTAL RESULTS 

 In this appendix, supplementary experimental results are presented using 

primarily the SNR metric but also the SSNR metric for four basic sets of experiments: 

enhancement, spectral phase estimation, time alignment, and attenuation factor 

estimation. 

 

Figure H-1 SNR Improvements for Single Channel Weighted Euclidean (WE) and Single 
Channel Weighted Cosh (WCOSH) Spectral Amplitude Estimation with Single Channel 

Spectral Phase Estimation 
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Figure H-2 SNR Improvements for Time Domain Estimation (Unity Attenuation Factors) 
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Figure H-3 SNR Improvements for Time Domain Estimation (Linear Attenuation 
Factors) 
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Figure H-4 SNR Improvements for Time Domain Estimation (Logarithmic Attenuation 
Factors) 
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Figure H-5 SNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Unity Attenuation 

Factors) 
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Figure H-6 SNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Linear 

Attenuation Factors) 
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Figure H-7 SNR Improvements for Short-Time Spectral Amplitude (STSA) and Log-
Spectral Amplitude (LSA) Estimation with Spectral Phase Estimation (Logarithmic 

Attenuation Factors) 
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Figure H-8 SNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Unity Attenuation Factors) 
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Figure H-9 SNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Linear Attenuation Factors) 
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Figure H-10 SNR Improvements for Weighted Euclidean (WE) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Logarithmic Attenuation Factors) 
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Figure H-11 SNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Unity Attenuation Factors) 
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Figure H-12 SNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Linear Attenuation Factors) 
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Figure H-13 SNR Improvements for Weighted Cosh (WCOSH) Spectral Amplitude 
Estimation with Spectral Phase Estimation (Logarithmic Attenuation Factors) 
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Figure H-14 SNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Unity Attenuation Factors) 
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Figure H-15 SNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Linear Attenuation Factors) 
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Figure H-16 SNR Improvements for Complex Real and Imaginary Spectral Component 
Estimation (Logarithmic Attenuation Factors) 
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SNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.12 0.00 15.89 0.00 12.73 

STSA + Estimated 
Phase 12.07 15.22 12.07 14.10 12.07 13.59 

STSA + Noisy 
Phase 12.07 14.32 12.07 13.71 12.07 13.42 

LSA + Estimated 
Phase 15.29 17.62 15.20 16.93 15.31 15.63 

LSA + Noisy Phase 15.26 16.48 15.61 16.40 15.26 15.38 

WE + Estimated 
Phase (p=-1.9) 20.02 23.92 20.43 21.96 20.68 20.43 

WCOSH + 
Estimated Phase 

(p=-0.9) 
20.09 22.87 19.75 20.98 20.00 19.86 

Complex 18.63 18.41 18.81 17.36 18.68 17.02 

Table H-1 SNR Improvement (Input SNR/SSNR = -20.0 dB/-27.6 dB) 
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SNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.20 0.00 11.21 0.00 9.07 

STSA + Estimated 
Phase 10.62 15.45 10.62 13.03 10.62 11.21 

STSA + Noisy 
Phase 10.62 13.52 10.62 12.19 10.62 10.94 

LSA + Estimated 
Phase 12.32 16.23 12.45 14.43 12.68 12.57 

LSA + Noisy Phase 12.59 13.69 12.47 12.95 12.40 12.16 

WE + Estimated 
Phase (p=-1.9) 11.92 13.37 11.88 18.05 12.21 14.80 

WCOSH + 
Estimated Phase 

(p=-0.9) 
12.35 19.49 12.09 16.61 12.04 14.53 

Complex 13.35 17.19 13.41 14.98 13.35 13.35 

Table H-2 SNR Improvement (Input SNR/SSNR = -10.0 dB/-17.6 dB) 
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SNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 14.89 0.00 10.57 0.00 7.07 

STSA + Estimated 
Phase 8.10 14.76 8.10 11.42 8.10 8.72 

STSA + Noisy 
Phase 8.10 10.51 8.10 9.38 8.10 7.93 

LSA + Estimated 
Phase 8.97 16.09 8.80 13.22 8.73 10.84 

LSA + Noisy Phase 8.83 10.93 8.87 10.49 8.87 9.46 

WE + Estimated 
Phase (p=-1.9) 7.50 17.23 7.47 14.30 7.40 11.92 

WCOSH + 
Estimated Phase 

(p=-0.9) 
7.77 17.27 8.26 14.56 7.95 11.71 

Complex 8.89 16.54 8.92 13.85 8.96 11.25 

Table H-3 SNR Improvement (Input SNR/SSNR = 0.0 dB/-7.6 dB) 
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SNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.05 0.00 10.49 0.00 6.99 

STSA + Estimated 
Phase 4.37 14.17 4.37 10.28 4.37 7.46 

STSA + Noisy 
Phase 4.37 7.72 4.37 7.01 4.37 6.03 

LSA + Estimated 
Phase 4.39 15.02 4.31 11.49 4.38 8.38 

LSA + Noisy Phase 4.39 7.93 4.39 7.65 4.38 6.88 

WE + Estimated 
Phase (p=-1.9) 2.97 14.48 2.80 10.51 2.47 7.86 

WCOSH + 
Estimated Phase 

(p=-0.9) 
3.31 14.86 3.22 10.97 3.12 8.03 

Complex 4.11 15.19 4.11 11.50 4.07 8.44 

Table H-4 SNR Improvement (Input SNR/SSNR = 10.0 dB/2.4 dB) 
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SSNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.12 0.00 16.88 0.00 12.83 

STSA + Estimated 
Phase 15.13 15.37 12.49 14.26 12.49 13.79 

STSA + Noisy 
Phase 12.49 14.57 12.49 13.92 12.49 13.65 

LSA + Estimated 
Phase 16.02 17.84 15.88 17.45 16.02 15.96 

LSA + Noisy Phase 15.92 16.85 16.35 16.90 15.94 15.74 

WE + Estimated 
Phase (p=-1.9) 25.72 25.41 24.91 23.55 25.45 23.45 

WCOSH + 
Estimated Phase 

(p=-0.9) 
23.67 23.42 23.39 22.26 23.59 21.95 

Complex 20.59 18.63 20.86 17.65 20.64 17.59 

Table H-5 SSNR Improvement (Input SNR/SSNR = -20.0 dB/-27.6 dB) 
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SSNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.62 0.00 11.27 0.00 9.25 

STSA + Estimated 
Phase 15.41 16.05 11.17 13.76 11.17 12.16 

STSA + Noisy 
Phase 11.17 14.35 11.17 13.00 11.17 11.90 

LSA + Estimated 
Phase 13.34 16.57 13.54 14.80 13.79 13.34 

LSA + Noisy Phase 13.64 14.50 13.60 13.74 13.53 13.12 

WE + Estimated 
Phase (p=-1.9) 16.88 21.38 16.78 19.93 16.96 17.96 

WCOSH + 
Estimated Phase 

(p=-0.9) 
16.70 20.63 16.18 18.54 16.36 17.16 

Complex 15.90 17.55 15.97 15.94 15.90 14.62 

Table H-6 SSNR Improvement (Input SNR/SSNR = -10.0 dB/-17.6 dB) 
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SSNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 14.89 0.00 10.57 0.00 7.08 

STSA + Estimated 
Phase 8.86 14.94 8.86 11.67 8.86 9.20 

STSA + Noisy 
Phase 8.86 11.20 8.86 9.87 8.86 8.47 

LSA + Estimated 
Phase 10.42 16.35 10.21 13.59 10.13 11.49 

LSA + Noisy Phase 10.28 11.83 10.25 11.21 10.28 10.45 

WE + Estimated 
Phase (p=-1.9) 11.27 18.73 11.31 16.36 11.14 14.38 

WCOSH + 
Estimated Phase 

(p=-0.9) 
10.97 18.44 11.29 16.15 10.91 14.09 

Complex 11.35 16.90 11.15 14.45 11.30 12.37 

Table H-7 SSNR Improvement (Input SNR/SSNR = 0.0 dB/-7.6 dB) 
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SSNR 
Improvements Attenuation Factors 

Methods 
Unity Linear Logarithmic 

1-Ch. 32-Ch. 1-Ch. 32-Ch. 1-Ch. 32-Ch. 

Time Domain 0.00 15.05 0.00 10.48 0.00 6.99 

STSA + Estimated 
Phase 2.40 14.01 14.38 5.64 10.62 5.64 

STSA + Noisy 
Phase 5.64 8.62 5.64 7.68 5.64 6.59 

LSA + Estimated 
Phase 6.24 15.35 6.26 12.00 6.25 9.44 

LSA + Noisy Phase 6.25 9.03 6.27 8.60 6.27 7.86 

WE + Estimated 
Phase (p=-1.9) 6.25 15.93 6.10 12.42 5.63 10.11 

WCOSH + 
Estimated Phase 

(p=-0.9) 
6.37 16.08 6.27 12.65 6.06 10.17 

Complex 6.67 15.66 6.67 12.35 6.60 9.80 

Table H-8 SSNR Improvement (Input SNR/SSNR = 10.0 dB/2.4 dB) 
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Figure H-17 SNR Improvement Difference between Multichannel Short-Time Spectral 
Amplitude (STSA) and Multichannel Log-Spectral Amplitude (LSA) Estimation with 

Multichannel Spectral Phase Estimation and Single Channel Short-Time Spectral 
Amplitude (STSA) and Single Channel Log-Spectral Amplitude (LSA) Estimation with 

Single Channel (Noisy) Spectral Phase Estimation (Unity Attenuation Factors) 
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Figure H-18 SNR Improvement Difference between Multichannel Short-Time Spectral 
Amplitude (STSA) and Multichannel Log-Spectral Amplitude (LSA) Estimation with 

Multichannel Spectral Phase Estimation and Single Channel Short-Time Spectral 
Amplitude (STSA) and Single Channel Log-Spectral Amplitude (LSA) Estimation with 

Single Channel (Noisy) Spectral Phase Estimation (Linear Attenuation Factors) 
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Figure H-19 SNR Improvement Difference between Multichannel Short-Time Spectral 
Amplitude (STSA) and Multichannel Log-Spectral Amplitude (LSA) Estimation with 

Multichannel Spectral Phase Estimation and Single Channel Short-Time Spectral 
Amplitude (STSA) and Single Channel Log-Spectral Amplitude (LSA) Estimation with 
Single Channel (Noisy) Spectral Phase Estimation (Logarithmic Attenuation Factors) 
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Figure H-20 SNR Improvement for 32 Microphones, -20 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-21 SNR Improvement for 32 Microphones, -10 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-22 SNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-23 SNR Improvement for 32 Microphones, 10 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 

0 5 10 15 20 25
4

6

8

10

12

14

16

18

20

Artificially Added Time Misalignment MSE [samples2]

S
N

R
 Im

pr
ov

em
en

t [
dB

]

 

 
Before Compensation
After Compensation
Single Channel



APPENDIX H SUPPLEMENTARY EXPERIMENTAL RESULTS 198 

 
Figure H-24 SSNR Improvement for 32 Microphones, -20 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-25 SSNR Improvement for 32 Microphones, -10 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-26 SSNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-27 SSNR Improvement for 32 Microphones, 10 dB Input SNR, and Unity 

Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 
Estimation Before and After Artificial Time Misalignment Compensation 
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Figure H-28 SNR Improvement for 32 Microphones, -20 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-29 SNR Improvement for 32 Microphones, -10 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-30 SNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-31 SNR Improvement for 32 Microphones, 10 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-32 SSNR Improvement for 32 Microphones, -20 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-33 SSNR Improvement for 32 Microphones, -10 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-34 SSNR Improvement for 32 Microphones, 0 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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Figure H-35 SSNR Improvement for 32 Microphones, 10 dB Input SNR, and Unity 
Attenuation Factors using Log-Spectral Amplitude Estimation (LSA) with Spectral Phase 

Estimation due to Artificial Error in Attenuation Factors 
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